ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nonconne GIF version

Theorem nonconne 2348
Description: Law of noncontradiction with equality and inequality. (Contributed by NM, 3-Feb-2012.)
Assertion
Ref Expression
nonconne ¬ (𝐴 = 𝐵𝐴𝐵)

Proof of Theorem nonconne
StepHypRef Expression
1 pm3.24 683 . 2 ¬ (𝐴 = 𝐵 ∧ ¬ 𝐴 = 𝐵)
2 df-ne 2337 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
32anbi2i 453 . 2 ((𝐴 = 𝐵𝐴𝐵) ↔ (𝐴 = 𝐵 ∧ ¬ 𝐴 = 𝐵))
41, 3mtbir 661 1 ¬ (𝐴 = 𝐵𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103   = wceq 1343  wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116  df-ne 2337
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator