| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcne | GIF version | ||
| Description: Decidable equality expressed in terms of ≠. Basically the same as df-dc 837. (Contributed by Jim Kingdon, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| dcne | ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 837 | . 2 ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
| 2 | df-ne 2378 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 2 | orbi2i 764 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵) ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
| 4 | 1, 3 | bitr4i 187 | 1 ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∨ wo 710 DECID wdc 836 = wceq 1373 ≠ wne 2377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-ne 2378 |
| This theorem is referenced by: updjudhf 7196 pr1or2 7316 zdceq 9468 nn0lt2 9474 xlesubadd 10025 qdceq 10409 ccat1st1st 11116 xrmaxadd 11647 fsumdvds 12228 nn0seqcvgd 12438 pcxnn0cl 12708 pcxqcl 12710 pcge0 12711 pcdvdsb 12718 pcneg 12723 pcdvdstr 12725 pcgcd1 12726 pc2dvds 12728 pcz 12730 pcprmpw2 12731 pcaddlem 12737 pcadd 12738 pcmpt 12741 qexpz 12750 4sqlem19 12807 lgsneg1 15577 lgsdirprm 15586 lgsdir 15587 lgsne0 15590 lgsdirnn0 15599 lgsdinn0 15600 2sqlem9 15676 tridceq 16136 |
| Copyright terms: Public domain | W3C validator |