ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcne GIF version

Theorem dcne 2411
Description: Decidable equality expressed in terms of . Basically the same as df-dc 840. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
dcne (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵𝐴𝐵))

Proof of Theorem dcne
StepHypRef Expression
1 df-dc 840 . 2 (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
2 df-ne 2401 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
32orbi2i 767 . 2 ((𝐴 = 𝐵𝐴𝐵) ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
41, 3bitr4i 187 1 (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wo 713  DECID wdc 839   = wceq 1395  wne 2400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ne 2401
This theorem is referenced by:  updjudhf  7242  pr1or2  7363  zdceq  9518  nn0lt2  9524  xlesubadd  10075  qdceq  10459  ccat1st1st  11167  swrdccatin1  11252  xrmaxadd  11767  fsumdvds  12348  nn0seqcvgd  12558  pcxnn0cl  12828  pcxqcl  12830  pcge0  12831  pcdvdsb  12838  pcneg  12843  pcdvdstr  12845  pcgcd1  12846  pc2dvds  12848  pcz  12850  pcprmpw2  12851  pcaddlem  12857  pcadd  12858  pcmpt  12861  qexpz  12870  4sqlem19  12927  lgsneg1  15698  lgsdirprm  15707  lgsdir  15708  lgsne0  15711  lgsdirnn0  15720  lgsdinn0  15721  2sqlem9  15797  tridceq  16383
  Copyright terms: Public domain W3C validator