ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcne GIF version

Theorem dcne 2375
Description: Decidable equality expressed in terms of . Basically the same as df-dc 836. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
dcne (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵𝐴𝐵))

Proof of Theorem dcne
StepHypRef Expression
1 df-dc 836 . 2 (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
2 df-ne 2365 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
32orbi2i 763 . 2 ((𝐴 = 𝐵𝐴𝐵) ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
41, 3bitr4i 187 1 (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wo 709  DECID wdc 835   = wceq 1364  wne 2364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710
This theorem depends on definitions:  df-bi 117  df-dc 836  df-ne 2365
This theorem is referenced by:  updjudhf  7138  zdceq  9392  nn0lt2  9398  xlesubadd  9949  qdceq  10314  xrmaxadd  11404  nn0seqcvgd  12179  pcxnn0cl  12448  pcxqcl  12450  pcge0  12451  pcdvdsb  12458  pcneg  12463  pcdvdstr  12465  pcgcd1  12466  pc2dvds  12468  pcz  12470  pcprmpw2  12471  pcaddlem  12477  pcadd  12478  pcmpt  12481  qexpz  12490  4sqlem19  12547  lgsneg1  15141  lgsdirprm  15150  lgsdir  15151  lgsne0  15154  lgsdirnn0  15163  lgsdinn0  15164  2sqlem9  15211  tridceq  15546
  Copyright terms: Public domain W3C validator