| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcne | GIF version | ||
| Description: Decidable equality expressed in terms of ≠. Basically the same as df-dc 836. (Contributed by Jim Kingdon, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| dcne | ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 836 | . 2 ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
| 2 | df-ne 2376 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 2 | orbi2i 763 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵) ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
| 4 | 1, 3 | bitr4i 187 | 1 ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∨ wo 709 DECID wdc 835 = wceq 1372 ≠ wne 2375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-ne 2376 |
| This theorem is referenced by: updjudhf 7180 zdceq 9447 nn0lt2 9453 xlesubadd 10004 qdceq 10385 xrmaxadd 11514 fsumdvds 12095 nn0seqcvgd 12305 pcxnn0cl 12575 pcxqcl 12577 pcge0 12578 pcdvdsb 12585 pcneg 12590 pcdvdstr 12592 pcgcd1 12593 pc2dvds 12595 pcz 12597 pcprmpw2 12598 pcaddlem 12604 pcadd 12605 pcmpt 12608 qexpz 12617 4sqlem19 12674 lgsneg1 15444 lgsdirprm 15453 lgsdir 15454 lgsne0 15457 lgsdirnn0 15466 lgsdinn0 15467 2sqlem9 15543 tridceq 15928 |
| Copyright terms: Public domain | W3C validator |