| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcne | GIF version | ||
| Description: Decidable equality expressed in terms of ≠. Basically the same as df-dc 836. (Contributed by Jim Kingdon, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| dcne | ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 836 | . 2 ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
| 2 | df-ne 2368 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 2 | orbi2i 763 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵) ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
| 4 | 1, 3 | bitr4i 187 | 1 ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∨ wo 709 DECID wdc 835 = wceq 1364 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-ne 2368 |
| This theorem is referenced by: updjudhf 7154 zdceq 9420 nn0lt2 9426 xlesubadd 9977 qdceq 10353 xrmaxadd 11445 fsumdvds 12026 nn0seqcvgd 12236 pcxnn0cl 12506 pcxqcl 12508 pcge0 12509 pcdvdsb 12516 pcneg 12521 pcdvdstr 12523 pcgcd1 12524 pc2dvds 12526 pcz 12528 pcprmpw2 12529 pcaddlem 12535 pcadd 12536 pcmpt 12539 qexpz 12548 4sqlem19 12605 lgsneg1 15374 lgsdirprm 15383 lgsdir 15384 lgsne0 15387 lgsdirnn0 15396 lgsdinn0 15397 2sqlem9 15473 tridceq 15813 |
| Copyright terms: Public domain | W3C validator |