Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcne | GIF version |
Description: Decidable equality expressed in terms of ≠. Basically the same as df-dc 835. (Contributed by Jim Kingdon, 14-Mar-2020.) |
Ref | Expression |
---|---|
dcne | ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dc 835 | . 2 ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
2 | df-ne 2346 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 2 | orbi2i 762 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵) ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
4 | 1, 3 | bitr4i 187 | 1 ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 105 ∨ wo 708 DECID wdc 834 = wceq 1353 ≠ wne 2345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-ne 2346 |
This theorem is referenced by: updjudhf 7068 zdceq 9301 nn0lt2 9307 xlesubadd 9854 qdceq 10217 xrmaxadd 11237 nn0seqcvgd 12008 pcxnn0cl 12277 pcge0 12279 pcdvdsb 12286 pcneg 12291 pcdvdstr 12293 pcgcd1 12294 pc2dvds 12296 pcz 12298 pcprmpw2 12299 pcaddlem 12305 pcadd 12306 pcmpt 12308 qexpz 12317 lgsneg1 14006 lgsdirprm 14015 lgsdir 14016 lgsne0 14019 lgsdirnn0 14028 lgsdinn0 14029 2sqlem9 14040 tridceq 14374 |
Copyright terms: Public domain | W3C validator |