Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcne | GIF version |
Description: Decidable equality expressed in terms of ≠. Basically the same as df-dc 825. (Contributed by Jim Kingdon, 14-Mar-2020.) |
Ref | Expression |
---|---|
dcne | ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dc 825 | . 2 ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
2 | df-ne 2336 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 2 | orbi2i 752 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵) ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
4 | 1, 3 | bitr4i 186 | 1 ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 ∨ wo 698 DECID wdc 824 = wceq 1343 ≠ wne 2335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-ne 2336 |
This theorem is referenced by: updjudhf 7040 zdceq 9262 nn0lt2 9268 xlesubadd 9815 qdceq 10178 xrmaxadd 11198 nn0seqcvgd 11969 pcxnn0cl 12238 pcge0 12240 pcdvdsb 12247 pcneg 12252 pcdvdstr 12254 pcgcd1 12255 pc2dvds 12257 pcz 12259 pcprmpw2 12260 pcaddlem 12266 pcadd 12267 pcmpt 12269 qexpz 12278 lgsneg1 13526 lgsdirprm 13535 lgsdir 13536 lgsne0 13539 lgsdirnn0 13548 lgsdinn0 13549 2sqlem9 13560 tridceq 13895 |
Copyright terms: Public domain | W3C validator |