ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcne GIF version

Theorem dcne 2356
Description: Decidable equality expressed in terms of . Basically the same as df-dc 835. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
dcne (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵𝐴𝐵))

Proof of Theorem dcne
StepHypRef Expression
1 df-dc 835 . 2 (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
2 df-ne 2346 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
32orbi2i 762 . 2 ((𝐴 = 𝐵𝐴𝐵) ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
41, 3bitr4i 187 1 (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wo 708  DECID wdc 834   = wceq 1353  wne 2345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709
This theorem depends on definitions:  df-bi 117  df-dc 835  df-ne 2346
This theorem is referenced by:  updjudhf  7068  zdceq  9301  nn0lt2  9307  xlesubadd  9854  qdceq  10217  xrmaxadd  11237  nn0seqcvgd  12008  pcxnn0cl  12277  pcge0  12279  pcdvdsb  12286  pcneg  12291  pcdvdstr  12293  pcgcd1  12294  pc2dvds  12296  pcz  12298  pcprmpw2  12299  pcaddlem  12305  pcadd  12306  pcmpt  12308  qexpz  12317  lgsneg1  14006  lgsdirprm  14015  lgsdir  14016  lgsne0  14019  lgsdirnn0  14028  lgsdinn0  14029  2sqlem9  14040  tridceq  14374
  Copyright terms: Public domain W3C validator