![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dcne | GIF version |
Description: Decidable equality expressed in terms of ≠. Basically the same as df-dc 836. (Contributed by Jim Kingdon, 14-Mar-2020.) |
Ref | Expression |
---|---|
dcne | ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dc 836 | . 2 ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
2 | df-ne 2365 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 2 | orbi2i 763 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵) ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
4 | 1, 3 | bitr4i 187 | 1 ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 105 ∨ wo 709 DECID wdc 835 = wceq 1364 ≠ wne 2364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-ne 2365 |
This theorem is referenced by: updjudhf 7138 zdceq 9392 nn0lt2 9398 xlesubadd 9949 qdceq 10314 xrmaxadd 11404 nn0seqcvgd 12179 pcxnn0cl 12448 pcxqcl 12450 pcge0 12451 pcdvdsb 12458 pcneg 12463 pcdvdstr 12465 pcgcd1 12466 pc2dvds 12468 pcz 12470 pcprmpw2 12471 pcaddlem 12477 pcadd 12478 pcmpt 12481 qexpz 12490 4sqlem19 12547 lgsneg1 15141 lgsdirprm 15150 lgsdir 15151 lgsne0 15154 lgsdirnn0 15163 lgsdinn0 15164 2sqlem9 15211 tridceq 15546 |
Copyright terms: Public domain | W3C validator |