| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcne | GIF version | ||
| Description: Decidable equality expressed in terms of ≠. Basically the same as df-dc 836. (Contributed by Jim Kingdon, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| dcne | ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 836 | . 2 ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
| 2 | df-ne 2376 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 2 | orbi2i 763 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵) ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
| 4 | 1, 3 | bitr4i 187 | 1 ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∨ wo 709 DECID wdc 835 = wceq 1372 ≠ wne 2375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-ne 2376 |
| This theorem is referenced by: updjudhf 7163 zdceq 9430 nn0lt2 9436 xlesubadd 9987 qdceq 10368 xrmaxadd 11491 fsumdvds 12072 nn0seqcvgd 12282 pcxnn0cl 12552 pcxqcl 12554 pcge0 12555 pcdvdsb 12562 pcneg 12567 pcdvdstr 12569 pcgcd1 12570 pc2dvds 12572 pcz 12574 pcprmpw2 12575 pcaddlem 12581 pcadd 12582 pcmpt 12585 qexpz 12594 4sqlem19 12651 lgsneg1 15420 lgsdirprm 15429 lgsdir 15430 lgsne0 15433 lgsdirnn0 15442 lgsdinn0 15443 2sqlem9 15519 tridceq 15859 |
| Copyright terms: Public domain | W3C validator |