| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcne | GIF version | ||
| Description: Decidable equality expressed in terms of ≠. Basically the same as df-dc 840. (Contributed by Jim Kingdon, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| dcne | ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 840 | . 2 ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
| 2 | df-ne 2401 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 2 | orbi2i 767 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵) ↔ (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
| 4 | 1, 3 | bitr4i 187 | 1 ⊢ (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∨ wo 713 DECID wdc 839 = wceq 1395 ≠ wne 2400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-ne 2401 |
| This theorem is referenced by: updjudhf 7242 pr1or2 7363 zdceq 9518 nn0lt2 9524 xlesubadd 10075 qdceq 10459 ccat1st1st 11167 swrdccatin1 11252 xrmaxadd 11767 fsumdvds 12348 nn0seqcvgd 12558 pcxnn0cl 12828 pcxqcl 12830 pcge0 12831 pcdvdsb 12838 pcneg 12843 pcdvdstr 12845 pcgcd1 12846 pc2dvds 12848 pcz 12850 pcprmpw2 12851 pcaddlem 12857 pcadd 12858 pcmpt 12861 qexpz 12870 4sqlem19 12927 lgsneg1 15698 lgsdirprm 15707 lgsdir 15708 lgsne0 15711 lgsdirnn0 15720 lgsdinn0 15721 2sqlem9 15797 tridceq 16383 |
| Copyright terms: Public domain | W3C validator |