![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neeq1 | GIF version |
Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) |
Ref | Expression |
---|---|
neeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2200 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | 1 | notbid 668 | . 2 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 = 𝐶 ↔ ¬ 𝐵 = 𝐶)) |
3 | df-ne 2365 | . 2 ⊢ (𝐴 ≠ 𝐶 ↔ ¬ 𝐴 = 𝐶) | |
4 | df-ne 2365 | . 2 ⊢ (𝐵 ≠ 𝐶 ↔ ¬ 𝐵 = 𝐶) | |
5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1364 ≠ wne 2364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-ne 2365 |
This theorem is referenced by: neeq1i 2379 neeq1d 2382 nelrdva 2967 disji2 4022 0inp0 4195 frecabcl 6452 fiintim 6985 eldju2ndl 7131 updjudhf 7138 netap 7314 2oneel 7316 2omotaplemap 7317 2omotaplemst 7318 exmidapne 7320 xnn0nemnf 9314 uzn0 9608 xrnemnf 9843 xrnepnf 9844 ngtmnft 9883 xsubge0 9947 xposdif 9948 xleaddadd 9953 fztpval 10149 pcpre1 12430 pcqmul 12441 pcqcl 12444 xpsfrnel 12927 isnzr2 13680 fiinopn 14172 neapmkv 15558 neap0mkv 15559 ltlenmkv 15560 |
Copyright terms: Public domain | W3C validator |