| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neeq1 | GIF version | ||
| Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| neeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2203 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | 1 | notbid 668 | . 2 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 = 𝐶 ↔ ¬ 𝐵 = 𝐶)) |
| 3 | df-ne 2368 | . 2 ⊢ (𝐴 ≠ 𝐶 ↔ ¬ 𝐴 = 𝐶) | |
| 4 | df-ne 2368 | . 2 ⊢ (𝐵 ≠ 𝐶 ↔ ¬ 𝐵 = 𝐶) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1364 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 |
| This theorem is referenced by: neeq1i 2382 neeq1d 2385 nelrdva 2971 disji2 4027 0inp0 4200 frecabcl 6466 fiintim 7001 eldju2ndl 7147 updjudhf 7154 netap 7339 2oneel 7341 2omotaplemap 7342 2omotaplemst 7343 exmidapne 7345 xnn0nemnf 9342 uzn0 9636 xrnemnf 9871 xrnepnf 9872 ngtmnft 9911 xsubge0 9975 xposdif 9976 xleaddadd 9981 fztpval 10177 pcpre1 12488 pcqmul 12499 pcqcl 12502 xpsfrnel 13048 isnzr2 13818 fiinopn 14348 neapmkv 15825 neap0mkv 15826 ltlenmkv 15827 |
| Copyright terms: Public domain | W3C validator |