| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neeq1 | GIF version | ||
| Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| neeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2236 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | 1 | notbid 671 | . 2 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 = 𝐶 ↔ ¬ 𝐵 = 𝐶)) |
| 3 | df-ne 2401 | . 2 ⊢ (𝐴 ≠ 𝐶 ↔ ¬ 𝐴 = 𝐶) | |
| 4 | df-ne 2401 | . 2 ⊢ (𝐵 ≠ 𝐶 ↔ ¬ 𝐵 = 𝐶) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1395 ≠ wne 2400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-ne 2401 |
| This theorem is referenced by: neeq1i 2415 neeq1d 2418 nelrdva 3010 disji2 4074 0inp0 4249 frecabcl 6543 fiintim 7089 eldju2ndl 7235 updjudhf 7242 netap 7436 2oneel 7438 2omotaplemap 7439 2omotaplemst 7440 exmidapne 7442 xnn0nemnf 9439 uzn0 9734 xrnemnf 9969 xrnepnf 9970 ngtmnft 10009 xsubge0 10073 xposdif 10074 xleaddadd 10079 fztpval 10275 hashdmprop2dom 11061 fun2dmnop0 11064 pcpre1 12810 pcqmul 12821 pcqcl 12824 xpsfrnel 13372 isnzr2 14142 fiinopn 14672 umgrvad2edg 16003 neapmkv 16395 neap0mkv 16396 ltlenmkv 16397 |
| Copyright terms: Public domain | W3C validator |