Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neeq1 | GIF version |
Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) |
Ref | Expression |
---|---|
neeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2164 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | 1 | notbid 657 | . 2 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 = 𝐶 ↔ ¬ 𝐵 = 𝐶)) |
3 | df-ne 2328 | . 2 ⊢ (𝐴 ≠ 𝐶 ↔ ¬ 𝐴 = 𝐶) | |
4 | df-ne 2328 | . 2 ⊢ (𝐵 ≠ 𝐶 ↔ ¬ 𝐵 = 𝐶) | |
5 | 2, 3, 4 | 3bitr4g 222 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 = wceq 1335 ≠ wne 2327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1427 ax-gen 1429 ax-4 1490 ax-17 1506 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-cleq 2150 df-ne 2328 |
This theorem is referenced by: neeq1i 2342 neeq1d 2345 nelrdva 2919 disji2 3958 0inp0 4126 frecabcl 6340 fiintim 6866 eldju2ndl 7006 updjudhf 7013 xnn0nemnf 9147 uzn0 9437 xrnemnf 9666 xrnepnf 9667 ngtmnft 9703 xsubge0 9767 xposdif 9768 xleaddadd 9773 fztpval 9967 fiinopn 12362 neapmkv 13601 |
Copyright terms: Public domain | W3C validator |