| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neeq1 | GIF version | ||
| Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| neeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2213 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | 1 | notbid 669 | . 2 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 = 𝐶 ↔ ¬ 𝐵 = 𝐶)) |
| 3 | df-ne 2378 | . 2 ⊢ (𝐴 ≠ 𝐶 ↔ ¬ 𝐴 = 𝐶) | |
| 4 | df-ne 2378 | . 2 ⊢ (𝐵 ≠ 𝐶 ↔ ¬ 𝐵 = 𝐶) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1373 ≠ wne 2377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-ne 2378 |
| This theorem is referenced by: neeq1i 2392 neeq1d 2395 nelrdva 2984 disji2 4043 0inp0 4218 frecabcl 6498 fiintim 7043 eldju2ndl 7189 updjudhf 7196 netap 7386 2oneel 7388 2omotaplemap 7389 2omotaplemst 7390 exmidapne 7392 xnn0nemnf 9389 uzn0 9684 xrnemnf 9919 xrnepnf 9920 ngtmnft 9959 xsubge0 10023 xposdif 10024 xleaddadd 10029 fztpval 10225 hashdmprop2dom 11011 fun2dmnop0 11014 pcpre1 12690 pcqmul 12701 pcqcl 12704 xpsfrnel 13251 isnzr2 14021 fiinopn 14551 neapmkv 16148 neap0mkv 16149 ltlenmkv 16150 |
| Copyright terms: Public domain | W3C validator |