![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neeq1 | GIF version |
Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) |
Ref | Expression |
---|---|
neeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2200 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | 1 | notbid 668 | . 2 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 = 𝐶 ↔ ¬ 𝐵 = 𝐶)) |
3 | df-ne 2365 | . 2 ⊢ (𝐴 ≠ 𝐶 ↔ ¬ 𝐴 = 𝐶) | |
4 | df-ne 2365 | . 2 ⊢ (𝐵 ≠ 𝐶 ↔ ¬ 𝐵 = 𝐶) | |
5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1364 ≠ wne 2364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-ne 2365 |
This theorem is referenced by: neeq1i 2379 neeq1d 2382 nelrdva 2968 disji2 4023 0inp0 4196 frecabcl 6454 fiintim 6987 eldju2ndl 7133 updjudhf 7140 netap 7316 2oneel 7318 2omotaplemap 7319 2omotaplemst 7320 exmidapne 7322 xnn0nemnf 9317 uzn0 9611 xrnemnf 9846 xrnepnf 9847 ngtmnft 9886 xsubge0 9950 xposdif 9951 xleaddadd 9956 fztpval 10152 pcpre1 12433 pcqmul 12444 pcqcl 12447 xpsfrnel 12930 isnzr2 13683 fiinopn 14183 neapmkv 15628 neap0mkv 15629 ltlenmkv 15630 |
Copyright terms: Public domain | W3C validator |