ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unssin GIF version

Theorem unssin 3361
Description: Union as a subset of class complement and intersection (De Morgan's law). One direction of the definition of union in [Mendelson] p. 231. This would be an equality, rather than subset, in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.)
Assertion
Ref Expression
unssin (𝐴𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)))

Proof of Theorem unssin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oranim 771 . . . . 5 ((𝑥𝐴𝑥𝐵) → ¬ (¬ 𝑥𝐴 ∧ ¬ 𝑥𝐵))
2 eldifn 3245 . . . . . 6 (𝑥 ∈ (V ∖ 𝐴) → ¬ 𝑥𝐴)
3 eldifn 3245 . . . . . 6 (𝑥 ∈ (V ∖ 𝐵) → ¬ 𝑥𝐵)
42, 3anim12i 336 . . . . 5 ((𝑥 ∈ (V ∖ 𝐴) ∧ 𝑥 ∈ (V ∖ 𝐵)) → (¬ 𝑥𝐴 ∧ ¬ 𝑥𝐵))
51, 4nsyl 618 . . . 4 ((𝑥𝐴𝑥𝐵) → ¬ (𝑥 ∈ (V ∖ 𝐴) ∧ 𝑥 ∈ (V ∖ 𝐵)))
6 elin 3305 . . . 4 (𝑥 ∈ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)) ↔ (𝑥 ∈ (V ∖ 𝐴) ∧ 𝑥 ∈ (V ∖ 𝐵)))
75, 6sylnibr 667 . . 3 ((𝑥𝐴𝑥𝐵) → ¬ 𝑥 ∈ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)))
8 elun 3263 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
9 vex 2729 . . . 4 𝑥 ∈ V
10 eldif 3125 . . . 4 (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))))
119, 10mpbiran 930 . . 3 (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)))
127, 8, 113imtr4i 200 . 2 (𝑥 ∈ (𝐴𝐵) → 𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))))
1312ssriv 3146 1 (𝐴𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wo 698  wcel 2136  Vcvv 2726  cdif 3113  cun 3114  cin 3115  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator