Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unssin | GIF version |
Description: Union as a subset of class complement and intersection (De Morgan's law). One direction of the definition of union in [Mendelson] p. 231. This would be an equality, rather than subset, in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.) |
Ref | Expression |
---|---|
unssin | ⊢ (𝐴 ∪ 𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oranim 771 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) → ¬ (¬ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
2 | eldifn 3226 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ 𝐴) → ¬ 𝑥 ∈ 𝐴) | |
3 | eldifn 3226 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ 𝐵) → ¬ 𝑥 ∈ 𝐵) | |
4 | 2, 3 | anim12i 336 | . . . . 5 ⊢ ((𝑥 ∈ (V ∖ 𝐴) ∧ 𝑥 ∈ (V ∖ 𝐵)) → (¬ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
5 | 1, 4 | nsyl 618 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) → ¬ (𝑥 ∈ (V ∖ 𝐴) ∧ 𝑥 ∈ (V ∖ 𝐵))) |
6 | elin 3286 | . . . 4 ⊢ (𝑥 ∈ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)) ↔ (𝑥 ∈ (V ∖ 𝐴) ∧ 𝑥 ∈ (V ∖ 𝐵))) | |
7 | 5, 6 | sylnibr 667 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) → ¬ 𝑥 ∈ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) |
8 | elun 3244 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
9 | vex 2712 | . . . 4 ⊢ 𝑥 ∈ V | |
10 | eldif 3107 | . . . 4 ⊢ (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)))) | |
11 | 9, 10 | mpbiran 925 | . . 3 ⊢ (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) |
12 | 7, 8, 11 | 3imtr4i 200 | . 2 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)))) |
13 | 12 | ssriv 3128 | 1 ⊢ (𝐴 ∪ 𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ∨ wo 698 ∈ wcel 2125 Vcvv 2709 ∖ cdif 3095 ∪ cun 3096 ∩ cin 3097 ⊆ wss 3098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |