ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unssin GIF version

Theorem unssin 3398
Description: Union as a subset of class complement and intersection (De Morgan's law). One direction of the definition of union in [Mendelson] p. 231. This would be an equality, rather than subset, in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.)
Assertion
Ref Expression
unssin (𝐴𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)))

Proof of Theorem unssin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oranim 782 . . . . 5 ((𝑥𝐴𝑥𝐵) → ¬ (¬ 𝑥𝐴 ∧ ¬ 𝑥𝐵))
2 eldifn 3282 . . . . . 6 (𝑥 ∈ (V ∖ 𝐴) → ¬ 𝑥𝐴)
3 eldifn 3282 . . . . . 6 (𝑥 ∈ (V ∖ 𝐵) → ¬ 𝑥𝐵)
42, 3anim12i 338 . . . . 5 ((𝑥 ∈ (V ∖ 𝐴) ∧ 𝑥 ∈ (V ∖ 𝐵)) → (¬ 𝑥𝐴 ∧ ¬ 𝑥𝐵))
51, 4nsyl 629 . . . 4 ((𝑥𝐴𝑥𝐵) → ¬ (𝑥 ∈ (V ∖ 𝐴) ∧ 𝑥 ∈ (V ∖ 𝐵)))
6 elin 3342 . . . 4 (𝑥 ∈ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)) ↔ (𝑥 ∈ (V ∖ 𝐴) ∧ 𝑥 ∈ (V ∖ 𝐵)))
75, 6sylnibr 678 . . 3 ((𝑥𝐴𝑥𝐵) → ¬ 𝑥 ∈ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)))
8 elun 3300 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
9 vex 2763 . . . 4 𝑥 ∈ V
10 eldif 3162 . . . 4 (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))))
119, 10mpbiran 942 . . 3 (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)))
127, 8, 113imtr4i 201 . 2 (𝑥 ∈ (𝐴𝐵) → 𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))))
1312ssriv 3183 1 (𝐴𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wo 709  wcel 2164  Vcvv 2760  cdif 3150  cun 3151  cin 3152  wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator