ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrlttri3 GIF version

Theorem xrlttri3 9872
Description: Extended real version of lttri3 8106. (Contributed by NM, 9-Feb-2006.)
Assertion
Ref Expression
xrlttri3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))

Proof of Theorem xrlttri3
StepHypRef Expression
1 elxr 9851 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 9851 . 2 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 lttri3 8106 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
43ancoms 268 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
5 renepnf 8074 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ≠ +∞)
65adantr 276 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 = +∞) → 𝐵 ≠ +∞)
7 neeq2 2381 . . . . . . . . . 10 (𝐴 = +∞ → (𝐵𝐴𝐵 ≠ +∞))
87adantl 277 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 = +∞) → (𝐵𝐴𝐵 ≠ +∞))
96, 8mpbird 167 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 = +∞) → 𝐵𝐴)
109necomd 2453 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 = +∞) → 𝐴𝐵)
1110neneqd 2388 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 = +∞) → ¬ 𝐴 = 𝐵)
12 ltpnf 9855 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 < +∞)
1312adantr 276 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 = +∞) → 𝐵 < +∞)
14 breq2 4037 . . . . . . . . 9 (𝐴 = +∞ → (𝐵 < 𝐴𝐵 < +∞))
1514adantl 277 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 = +∞) → (𝐵 < 𝐴𝐵 < +∞))
1613, 15mpbird 167 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 = +∞) → 𝐵 < 𝐴)
17 notnot 630 . . . . . . . . 9 ((𝐴 < 𝐵𝐵 < 𝐴) → ¬ ¬ (𝐴 < 𝐵𝐵 < 𝐴))
1817olcs 737 . . . . . . . 8 (𝐵 < 𝐴 → ¬ ¬ (𝐴 < 𝐵𝐵 < 𝐴))
19 ioran 753 . . . . . . . 8 (¬ (𝐴 < 𝐵𝐵 < 𝐴) ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
2018, 19sylnib 677 . . . . . . 7 (𝐵 < 𝐴 → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
2116, 20syl 14 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 = +∞) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
2211, 212falsed 703 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 = +∞) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
23 renemnf 8075 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ≠ -∞)
2423adantr 276 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 = -∞) → 𝐵 ≠ -∞)
25 neeq2 2381 . . . . . . . . . 10 (𝐴 = -∞ → (𝐵𝐴𝐵 ≠ -∞))
2625adantl 277 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 = -∞) → (𝐵𝐴𝐵 ≠ -∞))
2724, 26mpbird 167 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 = -∞) → 𝐵𝐴)
2827necomd 2453 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 = -∞) → 𝐴𝐵)
2928neneqd 2388 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 = -∞) → ¬ 𝐴 = 𝐵)
30 mnflt 9858 . . . . . . . . 9 (𝐵 ∈ ℝ → -∞ < 𝐵)
3130adantr 276 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 = -∞) → -∞ < 𝐵)
32 breq1 4036 . . . . . . . . 9 (𝐴 = -∞ → (𝐴 < 𝐵 ↔ -∞ < 𝐵))
3332adantl 277 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 = -∞) → (𝐴 < 𝐵 ↔ -∞ < 𝐵))
3431, 33mpbird 167 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 = -∞) → 𝐴 < 𝐵)
35 orc 713 . . . . . . 7 (𝐴 < 𝐵 → (𝐴 < 𝐵𝐵 < 𝐴))
36 oranim 782 . . . . . . 7 ((𝐴 < 𝐵𝐵 < 𝐴) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
3734, 35, 363syl 17 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 = -∞) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
3829, 372falsed 703 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 = -∞) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
394, 22, 383jaodan 1317 . . . 4 ((𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
4039ancoms 268 . . 3 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
41 renepnf 8074 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
4241adantl 277 . . . . . . . 8 ((𝐵 = +∞ ∧ 𝐴 ∈ ℝ) → 𝐴 ≠ +∞)
43 neeq2 2381 . . . . . . . . 9 (𝐵 = +∞ → (𝐴𝐵𝐴 ≠ +∞))
4443adantr 276 . . . . . . . 8 ((𝐵 = +∞ ∧ 𝐴 ∈ ℝ) → (𝐴𝐵𝐴 ≠ +∞))
4542, 44mpbird 167 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐴 ∈ ℝ) → 𝐴𝐵)
4645neneqd 2388 . . . . . 6 ((𝐵 = +∞ ∧ 𝐴 ∈ ℝ) → ¬ 𝐴 = 𝐵)
47 ltpnf 9855 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 < +∞)
4847adantl 277 . . . . . . . 8 ((𝐵 = +∞ ∧ 𝐴 ∈ ℝ) → 𝐴 < +∞)
49 breq2 4037 . . . . . . . . 9 (𝐵 = +∞ → (𝐴 < 𝐵𝐴 < +∞))
5049adantr 276 . . . . . . . 8 ((𝐵 = +∞ ∧ 𝐴 ∈ ℝ) → (𝐴 < 𝐵𝐴 < +∞))
5148, 50mpbird 167 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐴 ∈ ℝ) → 𝐴 < 𝐵)
5251, 35, 363syl 17 . . . . . 6 ((𝐵 = +∞ ∧ 𝐴 ∈ ℝ) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
5346, 522falsed 703 . . . . 5 ((𝐵 = +∞ ∧ 𝐴 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
54 eqtr3 2216 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐴 = +∞) → 𝐵 = 𝐴)
5554eqcomd 2202 . . . . . 6 ((𝐵 = +∞ ∧ 𝐴 = +∞) → 𝐴 = 𝐵)
56 pnfxr 8079 . . . . . . . . 9 +∞ ∈ ℝ*
57 xrltnr 9854 . . . . . . . . 9 (+∞ ∈ ℝ* → ¬ +∞ < +∞)
5856, 57ax-mp 5 . . . . . . . 8 ¬ +∞ < +∞
59 breq12 4038 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ +∞ < +∞))
6059ancoms 268 . . . . . . . 8 ((𝐵 = +∞ ∧ 𝐴 = +∞) → (𝐴 < 𝐵 ↔ +∞ < +∞))
6158, 60mtbiri 676 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐴 = +∞) → ¬ 𝐴 < 𝐵)
62 breq12 4038 . . . . . . . 8 ((𝐵 = +∞ ∧ 𝐴 = +∞) → (𝐵 < 𝐴 ↔ +∞ < +∞))
6358, 62mtbiri 676 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐴 = +∞) → ¬ 𝐵 < 𝐴)
6461, 63jca 306 . . . . . 6 ((𝐵 = +∞ ∧ 𝐴 = +∞) → (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
6555, 642thd 175 . . . . 5 ((𝐵 = +∞ ∧ 𝐴 = +∞) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
66 mnfnepnf 8082 . . . . . . . . 9 -∞ ≠ +∞
67 eqeq12 2209 . . . . . . . . . 10 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 = 𝐵 ↔ -∞ = +∞))
6867necon3bid 2408 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴𝐵 ↔ -∞ ≠ +∞))
6966, 68mpbiri 168 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 = +∞) → 𝐴𝐵)
7069ancoms 268 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐴 = -∞) → 𝐴𝐵)
7170neneqd 2388 . . . . . 6 ((𝐵 = +∞ ∧ 𝐴 = -∞) → ¬ 𝐴 = 𝐵)
72 mnfltpnf 9860 . . . . . . . . 9 -∞ < +∞
73 breq12 4038 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ -∞ < +∞))
7472, 73mpbiri 168 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 = +∞) → 𝐴 < 𝐵)
7574ancoms 268 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐴 = -∞) → 𝐴 < 𝐵)
7675, 35, 363syl 17 . . . . . 6 ((𝐵 = +∞ ∧ 𝐴 = -∞) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
7771, 762falsed 703 . . . . 5 ((𝐵 = +∞ ∧ 𝐴 = -∞) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
7853, 65, 773jaodan 1317 . . . 4 ((𝐵 = +∞ ∧ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
7978ancoms 268 . . 3 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 = +∞) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
80 renemnf 8075 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
8180adantl 277 . . . . . . . 8 ((𝐵 = -∞ ∧ 𝐴 ∈ ℝ) → 𝐴 ≠ -∞)
82 neeq2 2381 . . . . . . . . 9 (𝐵 = -∞ → (𝐴𝐵𝐴 ≠ -∞))
8382adantr 276 . . . . . . . 8 ((𝐵 = -∞ ∧ 𝐴 ∈ ℝ) → (𝐴𝐵𝐴 ≠ -∞))
8481, 83mpbird 167 . . . . . . 7 ((𝐵 = -∞ ∧ 𝐴 ∈ ℝ) → 𝐴𝐵)
8584neneqd 2388 . . . . . 6 ((𝐵 = -∞ ∧ 𝐴 ∈ ℝ) → ¬ 𝐴 = 𝐵)
86 mnflt 9858 . . . . . . . . 9 (𝐴 ∈ ℝ → -∞ < 𝐴)
8786adantl 277 . . . . . . . 8 ((𝐵 = -∞ ∧ 𝐴 ∈ ℝ) → -∞ < 𝐴)
88 breq1 4036 . . . . . . . . 9 (𝐵 = -∞ → (𝐵 < 𝐴 ↔ -∞ < 𝐴))
8988adantr 276 . . . . . . . 8 ((𝐵 = -∞ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ -∞ < 𝐴))
9087, 89mpbird 167 . . . . . . 7 ((𝐵 = -∞ ∧ 𝐴 ∈ ℝ) → 𝐵 < 𝐴)
9190, 20syl 14 . . . . . 6 ((𝐵 = -∞ ∧ 𝐴 ∈ ℝ) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
9285, 912falsed 703 . . . . 5 ((𝐵 = -∞ ∧ 𝐴 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
9366neii 2369 . . . . . . . . . 10 ¬ -∞ = +∞
94 eqeq12 2209 . . . . . . . . . 10 ((𝐵 = -∞ ∧ 𝐴 = +∞) → (𝐵 = 𝐴 ↔ -∞ = +∞))
9593, 94mtbiri 676 . . . . . . . . 9 ((𝐵 = -∞ ∧ 𝐴 = +∞) → ¬ 𝐵 = 𝐴)
9695neneqad 2446 . . . . . . . 8 ((𝐵 = -∞ ∧ 𝐴 = +∞) → 𝐵𝐴)
9796necomd 2453 . . . . . . 7 ((𝐵 = -∞ ∧ 𝐴 = +∞) → 𝐴𝐵)
9897neneqd 2388 . . . . . 6 ((𝐵 = -∞ ∧ 𝐴 = +∞) → ¬ 𝐴 = 𝐵)
99 breq12 4038 . . . . . . . 8 ((𝐵 = -∞ ∧ 𝐴 = +∞) → (𝐵 < 𝐴 ↔ -∞ < +∞))
10072, 99mpbiri 168 . . . . . . 7 ((𝐵 = -∞ ∧ 𝐴 = +∞) → 𝐵 < 𝐴)
101100, 20syl 14 . . . . . 6 ((𝐵 = -∞ ∧ 𝐴 = +∞) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
10298, 1012falsed 703 . . . . 5 ((𝐵 = -∞ ∧ 𝐴 = +∞) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
103 eqtr3 2216 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 = -∞) → 𝐴 = 𝐵)
104103ancoms 268 . . . . . 6 ((𝐵 = -∞ ∧ 𝐴 = -∞) → 𝐴 = 𝐵)
105 mnfxr 8083 . . . . . . . . 9 -∞ ∈ ℝ*
106 xrltnr 9854 . . . . . . . . 9 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
107105, 106ax-mp 5 . . . . . . . 8 ¬ -∞ < -∞
108 breq12 4038 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ -∞ < -∞))
109108ancoms 268 . . . . . . . 8 ((𝐵 = -∞ ∧ 𝐴 = -∞) → (𝐴 < 𝐵 ↔ -∞ < -∞))
110107, 109mtbiri 676 . . . . . . 7 ((𝐵 = -∞ ∧ 𝐴 = -∞) → ¬ 𝐴 < 𝐵)
111 breq12 4038 . . . . . . . 8 ((𝐵 = -∞ ∧ 𝐴 = -∞) → (𝐵 < 𝐴 ↔ -∞ < -∞))
112107, 111mtbiri 676 . . . . . . 7 ((𝐵 = -∞ ∧ 𝐴 = -∞) → ¬ 𝐵 < 𝐴)
113110, 112jca 306 . . . . . 6 ((𝐵 = -∞ ∧ 𝐴 = -∞) → (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
114104, 1132thd 175 . . . . 5 ((𝐵 = -∞ ∧ 𝐴 = -∞) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
11592, 102, 1143jaodan 1317 . . . 4 ((𝐵 = -∞ ∧ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
116115ancoms 268 . . 3 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 = -∞) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
11740, 79, 1163jaodan 1317 . 2 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
1181, 2, 117syl2anb 291 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3o 979   = wceq 1364  wcel 2167  wne 2367   class class class wbr 4033  cr 7878  +∞cpnf 8058  -∞cmnf 8059  *cxr 8060   < clt 8061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltirr 7991  ax-pre-apti 7994
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066
This theorem is referenced by:  xrletri3  9879  iccid  10000  xrmaxleim  11409  xrmaxif  11416  xrmaxaddlem  11425  infxrnegsupex  11428  bdxmet  14737
  Copyright terms: Public domain W3C validator