ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrlttri3 GIF version

Theorem xrlttri3 9733
Description: Extended real version of lttri3 7978. (Contributed by NM, 9-Feb-2006.)
Assertion
Ref Expression
xrlttri3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))

Proof of Theorem xrlttri3
StepHypRef Expression
1 elxr 9712 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 9712 . 2 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 lttri3 7978 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
43ancoms 266 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
5 renepnf 7946 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ≠ +∞)
65adantr 274 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 = +∞) → 𝐵 ≠ +∞)
7 neeq2 2350 . . . . . . . . . 10 (𝐴 = +∞ → (𝐵𝐴𝐵 ≠ +∞))
87adantl 275 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 = +∞) → (𝐵𝐴𝐵 ≠ +∞))
96, 8mpbird 166 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 = +∞) → 𝐵𝐴)
109necomd 2422 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 = +∞) → 𝐴𝐵)
1110neneqd 2357 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 = +∞) → ¬ 𝐴 = 𝐵)
12 ltpnf 9716 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 < +∞)
1312adantr 274 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 = +∞) → 𝐵 < +∞)
14 breq2 3986 . . . . . . . . 9 (𝐴 = +∞ → (𝐵 < 𝐴𝐵 < +∞))
1514adantl 275 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 = +∞) → (𝐵 < 𝐴𝐵 < +∞))
1613, 15mpbird 166 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 = +∞) → 𝐵 < 𝐴)
17 notnot 619 . . . . . . . . 9 ((𝐴 < 𝐵𝐵 < 𝐴) → ¬ ¬ (𝐴 < 𝐵𝐵 < 𝐴))
1817olcs 726 . . . . . . . 8 (𝐵 < 𝐴 → ¬ ¬ (𝐴 < 𝐵𝐵 < 𝐴))
19 ioran 742 . . . . . . . 8 (¬ (𝐴 < 𝐵𝐵 < 𝐴) ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
2018, 19sylnib 666 . . . . . . 7 (𝐵 < 𝐴 → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
2116, 20syl 14 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 = +∞) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
2211, 212falsed 692 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 = +∞) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
23 renemnf 7947 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ≠ -∞)
2423adantr 274 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 = -∞) → 𝐵 ≠ -∞)
25 neeq2 2350 . . . . . . . . . 10 (𝐴 = -∞ → (𝐵𝐴𝐵 ≠ -∞))
2625adantl 275 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 = -∞) → (𝐵𝐴𝐵 ≠ -∞))
2724, 26mpbird 166 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 = -∞) → 𝐵𝐴)
2827necomd 2422 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 = -∞) → 𝐴𝐵)
2928neneqd 2357 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 = -∞) → ¬ 𝐴 = 𝐵)
30 mnflt 9719 . . . . . . . . 9 (𝐵 ∈ ℝ → -∞ < 𝐵)
3130adantr 274 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 = -∞) → -∞ < 𝐵)
32 breq1 3985 . . . . . . . . 9 (𝐴 = -∞ → (𝐴 < 𝐵 ↔ -∞ < 𝐵))
3332adantl 275 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 = -∞) → (𝐴 < 𝐵 ↔ -∞ < 𝐵))
3431, 33mpbird 166 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 = -∞) → 𝐴 < 𝐵)
35 orc 702 . . . . . . 7 (𝐴 < 𝐵 → (𝐴 < 𝐵𝐵 < 𝐴))
36 oranim 771 . . . . . . 7 ((𝐴 < 𝐵𝐵 < 𝐴) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
3734, 35, 363syl 17 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 = -∞) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
3829, 372falsed 692 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 = -∞) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
394, 22, 383jaodan 1296 . . . 4 ((𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
4039ancoms 266 . . 3 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
41 renepnf 7946 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
4241adantl 275 . . . . . . . 8 ((𝐵 = +∞ ∧ 𝐴 ∈ ℝ) → 𝐴 ≠ +∞)
43 neeq2 2350 . . . . . . . . 9 (𝐵 = +∞ → (𝐴𝐵𝐴 ≠ +∞))
4443adantr 274 . . . . . . . 8 ((𝐵 = +∞ ∧ 𝐴 ∈ ℝ) → (𝐴𝐵𝐴 ≠ +∞))
4542, 44mpbird 166 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐴 ∈ ℝ) → 𝐴𝐵)
4645neneqd 2357 . . . . . 6 ((𝐵 = +∞ ∧ 𝐴 ∈ ℝ) → ¬ 𝐴 = 𝐵)
47 ltpnf 9716 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 < +∞)
4847adantl 275 . . . . . . . 8 ((𝐵 = +∞ ∧ 𝐴 ∈ ℝ) → 𝐴 < +∞)
49 breq2 3986 . . . . . . . . 9 (𝐵 = +∞ → (𝐴 < 𝐵𝐴 < +∞))
5049adantr 274 . . . . . . . 8 ((𝐵 = +∞ ∧ 𝐴 ∈ ℝ) → (𝐴 < 𝐵𝐴 < +∞))
5148, 50mpbird 166 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐴 ∈ ℝ) → 𝐴 < 𝐵)
5251, 35, 363syl 17 . . . . . 6 ((𝐵 = +∞ ∧ 𝐴 ∈ ℝ) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
5346, 522falsed 692 . . . . 5 ((𝐵 = +∞ ∧ 𝐴 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
54 eqtr3 2185 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐴 = +∞) → 𝐵 = 𝐴)
5554eqcomd 2171 . . . . . 6 ((𝐵 = +∞ ∧ 𝐴 = +∞) → 𝐴 = 𝐵)
56 pnfxr 7951 . . . . . . . . 9 +∞ ∈ ℝ*
57 xrltnr 9715 . . . . . . . . 9 (+∞ ∈ ℝ* → ¬ +∞ < +∞)
5856, 57ax-mp 5 . . . . . . . 8 ¬ +∞ < +∞
59 breq12 3987 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ +∞ < +∞))
6059ancoms 266 . . . . . . . 8 ((𝐵 = +∞ ∧ 𝐴 = +∞) → (𝐴 < 𝐵 ↔ +∞ < +∞))
6158, 60mtbiri 665 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐴 = +∞) → ¬ 𝐴 < 𝐵)
62 breq12 3987 . . . . . . . 8 ((𝐵 = +∞ ∧ 𝐴 = +∞) → (𝐵 < 𝐴 ↔ +∞ < +∞))
6358, 62mtbiri 665 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐴 = +∞) → ¬ 𝐵 < 𝐴)
6461, 63jca 304 . . . . . 6 ((𝐵 = +∞ ∧ 𝐴 = +∞) → (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
6555, 642thd 174 . . . . 5 ((𝐵 = +∞ ∧ 𝐴 = +∞) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
66 mnfnepnf 7954 . . . . . . . . 9 -∞ ≠ +∞
67 eqeq12 2178 . . . . . . . . . 10 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 = 𝐵 ↔ -∞ = +∞))
6867necon3bid 2377 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴𝐵 ↔ -∞ ≠ +∞))
6966, 68mpbiri 167 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 = +∞) → 𝐴𝐵)
7069ancoms 266 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐴 = -∞) → 𝐴𝐵)
7170neneqd 2357 . . . . . 6 ((𝐵 = +∞ ∧ 𝐴 = -∞) → ¬ 𝐴 = 𝐵)
72 mnfltpnf 9721 . . . . . . . . 9 -∞ < +∞
73 breq12 3987 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ -∞ < +∞))
7472, 73mpbiri 167 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 = +∞) → 𝐴 < 𝐵)
7574ancoms 266 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐴 = -∞) → 𝐴 < 𝐵)
7675, 35, 363syl 17 . . . . . 6 ((𝐵 = +∞ ∧ 𝐴 = -∞) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
7771, 762falsed 692 . . . . 5 ((𝐵 = +∞ ∧ 𝐴 = -∞) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
7853, 65, 773jaodan 1296 . . . 4 ((𝐵 = +∞ ∧ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
7978ancoms 266 . . 3 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 = +∞) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
80 renemnf 7947 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
8180adantl 275 . . . . . . . 8 ((𝐵 = -∞ ∧ 𝐴 ∈ ℝ) → 𝐴 ≠ -∞)
82 neeq2 2350 . . . . . . . . 9 (𝐵 = -∞ → (𝐴𝐵𝐴 ≠ -∞))
8382adantr 274 . . . . . . . 8 ((𝐵 = -∞ ∧ 𝐴 ∈ ℝ) → (𝐴𝐵𝐴 ≠ -∞))
8481, 83mpbird 166 . . . . . . 7 ((𝐵 = -∞ ∧ 𝐴 ∈ ℝ) → 𝐴𝐵)
8584neneqd 2357 . . . . . 6 ((𝐵 = -∞ ∧ 𝐴 ∈ ℝ) → ¬ 𝐴 = 𝐵)
86 mnflt 9719 . . . . . . . . 9 (𝐴 ∈ ℝ → -∞ < 𝐴)
8786adantl 275 . . . . . . . 8 ((𝐵 = -∞ ∧ 𝐴 ∈ ℝ) → -∞ < 𝐴)
88 breq1 3985 . . . . . . . . 9 (𝐵 = -∞ → (𝐵 < 𝐴 ↔ -∞ < 𝐴))
8988adantr 274 . . . . . . . 8 ((𝐵 = -∞ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ -∞ < 𝐴))
9087, 89mpbird 166 . . . . . . 7 ((𝐵 = -∞ ∧ 𝐴 ∈ ℝ) → 𝐵 < 𝐴)
9190, 20syl 14 . . . . . 6 ((𝐵 = -∞ ∧ 𝐴 ∈ ℝ) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
9285, 912falsed 692 . . . . 5 ((𝐵 = -∞ ∧ 𝐴 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
9366neii 2338 . . . . . . . . . 10 ¬ -∞ = +∞
94 eqeq12 2178 . . . . . . . . . 10 ((𝐵 = -∞ ∧ 𝐴 = +∞) → (𝐵 = 𝐴 ↔ -∞ = +∞))
9593, 94mtbiri 665 . . . . . . . . 9 ((𝐵 = -∞ ∧ 𝐴 = +∞) → ¬ 𝐵 = 𝐴)
9695neneqad 2415 . . . . . . . 8 ((𝐵 = -∞ ∧ 𝐴 = +∞) → 𝐵𝐴)
9796necomd 2422 . . . . . . 7 ((𝐵 = -∞ ∧ 𝐴 = +∞) → 𝐴𝐵)
9897neneqd 2357 . . . . . 6 ((𝐵 = -∞ ∧ 𝐴 = +∞) → ¬ 𝐴 = 𝐵)
99 breq12 3987 . . . . . . . 8 ((𝐵 = -∞ ∧ 𝐴 = +∞) → (𝐵 < 𝐴 ↔ -∞ < +∞))
10072, 99mpbiri 167 . . . . . . 7 ((𝐵 = -∞ ∧ 𝐴 = +∞) → 𝐵 < 𝐴)
101100, 20syl 14 . . . . . 6 ((𝐵 = -∞ ∧ 𝐴 = +∞) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
10298, 1012falsed 692 . . . . 5 ((𝐵 = -∞ ∧ 𝐴 = +∞) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
103 eqtr3 2185 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 = -∞) → 𝐴 = 𝐵)
104103ancoms 266 . . . . . 6 ((𝐵 = -∞ ∧ 𝐴 = -∞) → 𝐴 = 𝐵)
105 mnfxr 7955 . . . . . . . . 9 -∞ ∈ ℝ*
106 xrltnr 9715 . . . . . . . . 9 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
107105, 106ax-mp 5 . . . . . . . 8 ¬ -∞ < -∞
108 breq12 3987 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ -∞ < -∞))
109108ancoms 266 . . . . . . . 8 ((𝐵 = -∞ ∧ 𝐴 = -∞) → (𝐴 < 𝐵 ↔ -∞ < -∞))
110107, 109mtbiri 665 . . . . . . 7 ((𝐵 = -∞ ∧ 𝐴 = -∞) → ¬ 𝐴 < 𝐵)
111 breq12 3987 . . . . . . . 8 ((𝐵 = -∞ ∧ 𝐴 = -∞) → (𝐵 < 𝐴 ↔ -∞ < -∞))
112107, 111mtbiri 665 . . . . . . 7 ((𝐵 = -∞ ∧ 𝐴 = -∞) → ¬ 𝐵 < 𝐴)
113110, 112jca 304 . . . . . 6 ((𝐵 = -∞ ∧ 𝐴 = -∞) → (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
114104, 1132thd 174 . . . . 5 ((𝐵 = -∞ ∧ 𝐴 = -∞) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
11592, 102, 1143jaodan 1296 . . . 4 ((𝐵 = -∞ ∧ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
116115ancoms 266 . . 3 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 = -∞) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
11740, 79, 1163jaodan 1296 . 2 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
1181, 2, 117syl2anb 289 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  w3o 967   = wceq 1343  wcel 2136  wne 2336   class class class wbr 3982  cr 7752  +∞cpnf 7930  -∞cmnf 7931  *cxr 7932   < clt 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltirr 7865  ax-pre-apti 7868
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938
This theorem is referenced by:  xrletri3  9740  iccid  9861  xrmaxleim  11185  xrmaxif  11192  xrmaxaddlem  11201  infxrnegsupex  11204  bdxmet  13141
  Copyright terms: Public domain W3C validator