ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ftpg GIF version

Theorem ftpg 5465
Description: A function with a domain of three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
Assertion
Ref Expression
ftpg (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶})

Proof of Theorem ftpg
StepHypRef Expression
1 3simpa 940 . . . 4 ((𝑋𝑈𝑌𝑉𝑍𝑊) → (𝑋𝑈𝑌𝑉))
2 3simpa 940 . . . 4 ((𝐴𝐹𝐵𝐺𝐶𝐻) → (𝐴𝐹𝐵𝐺))
3 simp1 943 . . . 4 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑋𝑌)
4 fprg 5464 . . . 4 (((𝑋𝑈𝑌𝑉) ∧ (𝐴𝐹𝐵𝐺) ∧ 𝑋𝑌) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}:{𝑋, 𝑌}⟶{𝐴, 𝐵})
51, 2, 3, 4syl3an 1216 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}:{𝑋, 𝑌}⟶{𝐴, 𝐵})
6 eqidd 2089 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑍, 𝐶⟩} = {⟨𝑍, 𝐶⟩})
7 simp3 945 . . . . . . 7 ((𝑋𝑈𝑌𝑉𝑍𝑊) → 𝑍𝑊)
8 simp3 945 . . . . . . 7 ((𝐴𝐹𝐵𝐺𝐶𝐻) → 𝐶𝐻)
97, 8anim12i 331 . . . . . 6 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻)) → (𝑍𝑊𝐶𝐻))
1093adant3 963 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝑍𝑊𝐶𝐻))
11 fsng 5454 . . . . 5 ((𝑍𝑊𝐶𝐻) → ({⟨𝑍, 𝐶⟩}:{𝑍}⟶{𝐶} ↔ {⟨𝑍, 𝐶⟩} = {⟨𝑍, 𝐶⟩}))
1210, 11syl 14 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ({⟨𝑍, 𝐶⟩}:{𝑍}⟶{𝐶} ↔ {⟨𝑍, 𝐶⟩} = {⟨𝑍, 𝐶⟩}))
136, 12mpbird 165 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑍, 𝐶⟩}:{𝑍}⟶{𝐶})
14 df-ne 2256 . . . . . . 7 (𝑋𝑍 ↔ ¬ 𝑋 = 𝑍)
15 df-ne 2256 . . . . . . 7 (𝑌𝑍 ↔ ¬ 𝑌 = 𝑍)
16 elpri 3464 . . . . . . . . . 10 (𝑍 ∈ {𝑋, 𝑌} → (𝑍 = 𝑋𝑍 = 𝑌))
17 eqcom 2090 . . . . . . . . . . 11 (𝑍 = 𝑋𝑋 = 𝑍)
18 eqcom 2090 . . . . . . . . . . 11 (𝑍 = 𝑌𝑌 = 𝑍)
1917, 18orbi12i 716 . . . . . . . . . 10 ((𝑍 = 𝑋𝑍 = 𝑌) ↔ (𝑋 = 𝑍𝑌 = 𝑍))
2016, 19sylib 120 . . . . . . . . 9 (𝑍 ∈ {𝑋, 𝑌} → (𝑋 = 𝑍𝑌 = 𝑍))
21 oranim 845 . . . . . . . . 9 ((𝑋 = 𝑍𝑌 = 𝑍) → ¬ (¬ 𝑋 = 𝑍 ∧ ¬ 𝑌 = 𝑍))
2220, 21syl 14 . . . . . . . 8 (𝑍 ∈ {𝑋, 𝑌} → ¬ (¬ 𝑋 = 𝑍 ∧ ¬ 𝑌 = 𝑍))
2322con2i 592 . . . . . . 7 ((¬ 𝑋 = 𝑍 ∧ ¬ 𝑌 = 𝑍) → ¬ 𝑍 ∈ {𝑋, 𝑌})
2414, 15, 23syl2anb 285 . . . . . 6 ((𝑋𝑍𝑌𝑍) → ¬ 𝑍 ∈ {𝑋, 𝑌})
25243adant1 961 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → ¬ 𝑍 ∈ {𝑋, 𝑌})
26253ad2ant3 966 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ¬ 𝑍 ∈ {𝑋, 𝑌})
27 disjsn 3499 . . . 4 (({𝑋, 𝑌} ∩ {𝑍}) = ∅ ↔ ¬ 𝑍 ∈ {𝑋, 𝑌})
2826, 27sylibr 132 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ({𝑋, 𝑌} ∩ {𝑍}) = ∅)
29 fun 5168 . . 3 ((({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}:{𝑋, 𝑌}⟶{𝐴, 𝐵} ∧ {⟨𝑍, 𝐶⟩}:{𝑍}⟶{𝐶}) ∧ ({𝑋, 𝑌} ∩ {𝑍}) = ∅) → ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):({𝑋, 𝑌} ∪ {𝑍})⟶({𝐴, 𝐵} ∪ {𝐶}))
305, 13, 28, 29syl21anc 1173 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):({𝑋, 𝑌} ∪ {𝑍})⟶({𝐴, 𝐵} ∪ {𝐶}))
31 df-tp 3449 . . . 4 {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩})
3231feq1i 5140 . . 3 ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶} ↔ ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶})
33 df-tp 3449 . . . 4 {𝑋, 𝑌, 𝑍} = ({𝑋, 𝑌} ∪ {𝑍})
34 df-tp 3449 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
3533, 34feq23i 5142 . . 3 (({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶} ↔ ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):({𝑋, 𝑌} ∪ {𝑍})⟶({𝐴, 𝐵} ∪ {𝐶}))
3632, 35bitri 182 . 2 ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶} ↔ ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):({𝑋, 𝑌} ∪ {𝑍})⟶({𝐴, 𝐵} ∪ {𝐶}))
3730, 36sylibr 132 1 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 664  w3a 924   = wceq 1289  wcel 1438  wne 2255  cun 2995  cin 2996  c0 3284  {csn 3441  {cpr 3442  {ctp 3443  cop 3444  wf 4998
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-tp 3449  df-op 3450  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009
This theorem is referenced by:  ftp  5466
  Copyright terms: Public domain W3C validator