ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ftpg GIF version

Theorem ftpg 5558
Description: A function with a domain of three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
Assertion
Ref Expression
ftpg (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶})

Proof of Theorem ftpg
StepHypRef Expression
1 3simpa 961 . . . 4 ((𝑋𝑈𝑌𝑉𝑍𝑊) → (𝑋𝑈𝑌𝑉))
2 3simpa 961 . . . 4 ((𝐴𝐹𝐵𝐺𝐶𝐻) → (𝐴𝐹𝐵𝐺))
3 simp1 964 . . . 4 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑋𝑌)
4 fprg 5557 . . . 4 (((𝑋𝑈𝑌𝑉) ∧ (𝐴𝐹𝐵𝐺) ∧ 𝑋𝑌) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}:{𝑋, 𝑌}⟶{𝐴, 𝐵})
51, 2, 3, 4syl3an 1241 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}:{𝑋, 𝑌}⟶{𝐴, 𝐵})
6 eqidd 2116 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑍, 𝐶⟩} = {⟨𝑍, 𝐶⟩})
7 simp3 966 . . . . . . 7 ((𝑋𝑈𝑌𝑉𝑍𝑊) → 𝑍𝑊)
8 simp3 966 . . . . . . 7 ((𝐴𝐹𝐵𝐺𝐶𝐻) → 𝐶𝐻)
97, 8anim12i 334 . . . . . 6 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻)) → (𝑍𝑊𝐶𝐻))
1093adant3 984 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝑍𝑊𝐶𝐻))
11 fsng 5547 . . . . 5 ((𝑍𝑊𝐶𝐻) → ({⟨𝑍, 𝐶⟩}:{𝑍}⟶{𝐶} ↔ {⟨𝑍, 𝐶⟩} = {⟨𝑍, 𝐶⟩}))
1210, 11syl 14 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ({⟨𝑍, 𝐶⟩}:{𝑍}⟶{𝐶} ↔ {⟨𝑍, 𝐶⟩} = {⟨𝑍, 𝐶⟩}))
136, 12mpbird 166 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑍, 𝐶⟩}:{𝑍}⟶{𝐶})
14 df-ne 2283 . . . . . . 7 (𝑋𝑍 ↔ ¬ 𝑋 = 𝑍)
15 df-ne 2283 . . . . . . 7 (𝑌𝑍 ↔ ¬ 𝑌 = 𝑍)
16 elpri 3516 . . . . . . . . . 10 (𝑍 ∈ {𝑋, 𝑌} → (𝑍 = 𝑋𝑍 = 𝑌))
17 eqcom 2117 . . . . . . . . . . 11 (𝑍 = 𝑋𝑋 = 𝑍)
18 eqcom 2117 . . . . . . . . . . 11 (𝑍 = 𝑌𝑌 = 𝑍)
1917, 18orbi12i 736 . . . . . . . . . 10 ((𝑍 = 𝑋𝑍 = 𝑌) ↔ (𝑋 = 𝑍𝑌 = 𝑍))
2016, 19sylib 121 . . . . . . . . 9 (𝑍 ∈ {𝑋, 𝑌} → (𝑋 = 𝑍𝑌 = 𝑍))
21 oranim 753 . . . . . . . . 9 ((𝑋 = 𝑍𝑌 = 𝑍) → ¬ (¬ 𝑋 = 𝑍 ∧ ¬ 𝑌 = 𝑍))
2220, 21syl 14 . . . . . . . 8 (𝑍 ∈ {𝑋, 𝑌} → ¬ (¬ 𝑋 = 𝑍 ∧ ¬ 𝑌 = 𝑍))
2322con2i 599 . . . . . . 7 ((¬ 𝑋 = 𝑍 ∧ ¬ 𝑌 = 𝑍) → ¬ 𝑍 ∈ {𝑋, 𝑌})
2414, 15, 23syl2anb 287 . . . . . 6 ((𝑋𝑍𝑌𝑍) → ¬ 𝑍 ∈ {𝑋, 𝑌})
25243adant1 982 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → ¬ 𝑍 ∈ {𝑋, 𝑌})
26253ad2ant3 987 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ¬ 𝑍 ∈ {𝑋, 𝑌})
27 disjsn 3551 . . . 4 (({𝑋, 𝑌} ∩ {𝑍}) = ∅ ↔ ¬ 𝑍 ∈ {𝑋, 𝑌})
2826, 27sylibr 133 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ({𝑋, 𝑌} ∩ {𝑍}) = ∅)
29 fun 5253 . . 3 ((({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}:{𝑋, 𝑌}⟶{𝐴, 𝐵} ∧ {⟨𝑍, 𝐶⟩}:{𝑍}⟶{𝐶}) ∧ ({𝑋, 𝑌} ∩ {𝑍}) = ∅) → ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):({𝑋, 𝑌} ∪ {𝑍})⟶({𝐴, 𝐵} ∪ {𝐶}))
305, 13, 28, 29syl21anc 1198 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):({𝑋, 𝑌} ∪ {𝑍})⟶({𝐴, 𝐵} ∪ {𝐶}))
31 df-tp 3501 . . . 4 {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩})
3231feq1i 5223 . . 3 ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶} ↔ ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶})
33 df-tp 3501 . . . 4 {𝑋, 𝑌, 𝑍} = ({𝑋, 𝑌} ∪ {𝑍})
34 df-tp 3501 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
3533, 34feq23i 5225 . . 3 (({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶} ↔ ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):({𝑋, 𝑌} ∪ {𝑍})⟶({𝐴, 𝐵} ∪ {𝐶}))
3632, 35bitri 183 . 2 ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶} ↔ ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):({𝑋, 𝑌} ∪ {𝑍})⟶({𝐴, 𝐵} ∪ {𝐶}))
3730, 36sylibr 133 1 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 680  w3a 945   = wceq 1314  wcel 1463  wne 2282  cun 3035  cin 3036  c0 3329  {csn 3493  {cpr 3494  {ctp 3495  cop 3496  wf 5077
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-v 2659  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-tp 3501  df-op 3502  df-br 3896  df-opab 3950  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088
This theorem is referenced by:  ftp  5559
  Copyright terms: Public domain W3C validator