ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prneimg GIF version

Theorem prneimg 3737
Description: Two pairs are not equal if at least one element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.)
Assertion
Ref Expression
prneimg (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}))

Proof of Theorem prneimg
StepHypRef Expression
1 preq12bg 3736 . . . . 5 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
2 orddi 810 . . . . . 6 (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) ↔ (((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐴 = 𝐶𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷𝐴 = 𝐷) ∧ (𝐵 = 𝐷𝐵 = 𝐶))))
3 simpll 519 . . . . . . 7 ((((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐴 = 𝐶𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷𝐴 = 𝐷) ∧ (𝐵 = 𝐷𝐵 = 𝐶))) → (𝐴 = 𝐶𝐴 = 𝐷))
4 pm1.4 717 . . . . . . . 8 ((𝐵 = 𝐷𝐵 = 𝐶) → (𝐵 = 𝐶𝐵 = 𝐷))
54ad2antll 483 . . . . . . 7 ((((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐴 = 𝐶𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷𝐴 = 𝐷) ∧ (𝐵 = 𝐷𝐵 = 𝐶))) → (𝐵 = 𝐶𝐵 = 𝐷))
63, 5jca 304 . . . . . 6 ((((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐴 = 𝐶𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷𝐴 = 𝐷) ∧ (𝐵 = 𝐷𝐵 = 𝐶))) → ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)))
72, 6sylbi 120 . . . . 5 (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) → ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)))
81, 7syl6bi 162 . . . 4 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷))))
9 oranim 771 . . . . . 6 ((𝐴 = 𝐶𝐴 = 𝐷) → ¬ (¬ 𝐴 = 𝐶 ∧ ¬ 𝐴 = 𝐷))
10 df-ne 2328 . . . . . . 7 (𝐴𝐶 ↔ ¬ 𝐴 = 𝐶)
11 df-ne 2328 . . . . . . 7 (𝐴𝐷 ↔ ¬ 𝐴 = 𝐷)
1210, 11anbi12i 456 . . . . . 6 ((𝐴𝐶𝐴𝐷) ↔ (¬ 𝐴 = 𝐶 ∧ ¬ 𝐴 = 𝐷))
139, 12sylnibr 667 . . . . 5 ((𝐴 = 𝐶𝐴 = 𝐷) → ¬ (𝐴𝐶𝐴𝐷))
14 oranim 771 . . . . . 6 ((𝐵 = 𝐶𝐵 = 𝐷) → ¬ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐵 = 𝐷))
15 df-ne 2328 . . . . . . 7 (𝐵𝐶 ↔ ¬ 𝐵 = 𝐶)
16 df-ne 2328 . . . . . . 7 (𝐵𝐷 ↔ ¬ 𝐵 = 𝐷)
1715, 16anbi12i 456 . . . . . 6 ((𝐵𝐶𝐵𝐷) ↔ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐵 = 𝐷))
1814, 17sylnibr 667 . . . . 5 ((𝐵 = 𝐶𝐵 = 𝐷) → ¬ (𝐵𝐶𝐵𝐷))
1913, 18anim12i 336 . . . 4 (((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)) → (¬ (𝐴𝐶𝐴𝐷) ∧ ¬ (𝐵𝐶𝐵𝐷)))
208, 19syl6 33 . . 3 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → (¬ (𝐴𝐶𝐴𝐷) ∧ ¬ (𝐵𝐶𝐵𝐷))))
21 pm4.56 770 . . 3 ((¬ (𝐴𝐶𝐴𝐷) ∧ ¬ (𝐵𝐶𝐵𝐷)) ↔ ¬ ((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)))
2220, 21syl6ib 160 . 2 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ¬ ((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷))))
2322necon2ad 2384 1 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698   = wceq 1335  wcel 2128  wne 2327  {cpr 3561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-v 2714  df-un 3106  df-sn 3566  df-pr 3567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator