ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orbi1i GIF version

Theorem orbi1i 764
Description: Inference adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
orbi2i.1 (𝜑𝜓)
Assertion
Ref Expression
orbi1i ((𝜑𝜒) ↔ (𝜓𝜒))

Proof of Theorem orbi1i
StepHypRef Expression
1 orcom 729 . 2 ((𝜑𝜒) ↔ (𝜒𝜑))
2 orbi2i.1 . . 3 (𝜑𝜓)
32orbi2i 763 . 2 ((𝜒𝜑) ↔ (𝜒𝜓))
4 orcom 729 . 2 ((𝜒𝜓) ↔ (𝜓𝜒))
51, 3, 43bitri 206 1 ((𝜑𝜒) ↔ (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wb 105  wo 709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  orbi12i  765  orordi  774  3or6  1334  19.45  1694  sbequilem  1849  unass  3307  frecsuc  6426  nninfwlporlemd  7188  elznn0nn  9285
  Copyright terms: Public domain W3C validator