| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3i | GIF version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr3i.1 | ⊢ (𝜓 ↔ 𝜑) |
| bitr3i.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| bitr3i | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3i.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | bicomi 132 | . 2 ⊢ (𝜑 ↔ 𝜓) |
| 3 | bitr3i.2 | . 2 ⊢ (𝜓 ↔ 𝜒) | |
| 4 | 2, 3 | bitri 184 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrri 207 3bitr3i 210 3bitr3ri 211 anandi 592 anandir 593 xchnxbi 684 orordi 777 orordir 778 sbco3v 2000 sbco4 2038 elsb1 2187 elsb2 2188 abeq1i 2321 cbvabw 2332 r19.41 2666 rexcom4a 2804 moeq 2958 mosubt 2960 2reuswapdc 2987 nfcdeq 3005 sbcid 3024 sbcco2 3031 sbc7 3035 sbcie2g 3042 eqsbc1 3048 sbcralt 3085 sbcrext 3086 cbvralcsf 3167 cbvrexcsf 3168 cbvrabcsf 3170 abss 3273 ssab 3274 difrab 3458 abn0m 3497 prsspw 3822 disjnim 4052 brab1 4110 unopab 4142 exss 4292 uniuni 4519 elvvv 4759 eliunxp 4838 ralxp 4842 rexxp 4843 opelco 4871 reldm0 4918 resieq 4991 resiexg 5026 iss 5027 imai 5060 cnvsym 5088 intasym 5089 asymref 5090 codir 5093 poirr2 5097 rninxp 5148 cnvsom 5248 funopg 5328 fin 5488 f1cnvcnv 5518 fndmin 5715 resoprab 6071 mpo2eqb 6085 ov6g 6114 offval 6196 dfopab2 6305 dfoprab3s 6306 fmpox 6316 spc2ed 6349 brtpos0 6368 dftpos3 6378 tpostpos 6380 ercnv 6671 xpcomco 6953 xpassen 6957 phpm 6995 ctssdccl 7246 elni2 7469 elfz2nn0 10276 elfzmlbp 10296 clim0 11762 nnwosdc 12526 isstructim 13012 xpscf 13346 srgrmhm 13923 ntreq0 14771 cnmptcom 14937 dedekindicclemicc 15271 |
| Copyright terms: Public domain | W3C validator |