| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3i | GIF version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr3i.1 | ⊢ (𝜓 ↔ 𝜑) |
| bitr3i.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| bitr3i | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3i.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | bicomi 132 | . 2 ⊢ (𝜑 ↔ 𝜓) |
| 3 | bitr3i.2 | . 2 ⊢ (𝜓 ↔ 𝜒) | |
| 4 | 2, 3 | bitri 184 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrri 207 3bitr3i 210 3bitr3ri 211 anandi 590 anandir 591 xchnxbi 681 orordi 774 orordir 775 sbco3v 1988 sbco4 2026 elsb1 2174 elsb2 2175 abeq1i 2308 cbvabw 2319 r19.41 2652 rexcom4a 2787 moeq 2939 mosubt 2941 2reuswapdc 2968 nfcdeq 2986 sbcid 3005 sbcco2 3012 sbc7 3016 sbcie2g 3023 eqsbc1 3029 sbcralt 3066 sbcrext 3067 cbvralcsf 3147 cbvrexcsf 3148 cbvrabcsf 3150 abss 3252 ssab 3253 difrab 3437 abn0m 3476 prsspw 3795 disjnim 4024 brab1 4080 unopab 4112 exss 4260 uniuni 4486 elvvv 4726 eliunxp 4805 ralxp 4809 rexxp 4810 opelco 4838 reldm0 4884 resieq 4956 resiexg 4991 iss 4992 imai 5025 cnvsym 5053 intasym 5054 asymref 5055 codir 5058 poirr2 5062 rninxp 5113 cnvsom 5213 funopg 5292 fin 5444 f1cnvcnv 5474 fndmin 5669 resoprab 6018 mpo2eqb 6032 ov6g 6061 offval 6143 dfopab2 6247 dfoprab3s 6248 fmpox 6258 spc2ed 6291 brtpos0 6310 dftpos3 6320 tpostpos 6322 ercnv 6613 xpcomco 6885 xpassen 6889 phpm 6926 ctssdccl 7177 elni2 7381 elfz2nn0 10187 elfzmlbp 10207 clim0 11450 nnwosdc 12206 isstructim 12692 xpscf 12990 srgrmhm 13550 ntreq0 14368 cnmptcom 14534 dedekindicclemicc 14868 |
| Copyright terms: Public domain | W3C validator |