Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr3i | GIF version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr3i.1 | ⊢ (𝜓 ↔ 𝜑) |
bitr3i.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
bitr3i | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3i.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | bicomi 131 | . 2 ⊢ (𝜑 ↔ 𝜓) |
3 | bitr3i.2 | . 2 ⊢ (𝜓 ↔ 𝜒) | |
4 | 2, 3 | bitri 183 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitrri 206 3bitr3i 209 3bitr3ri 210 anandi 580 anandir 581 xchnxbi 670 orordi 763 orordir 764 sbco3v 1957 sbco4 1995 elsb1 2143 elsb2 2144 abeq1i 2278 cbvabw 2289 r19.41 2621 rexcom4a 2750 moeq 2901 mosubt 2903 2reuswapdc 2930 nfcdeq 2948 sbcid 2966 sbcco2 2973 sbc7 2977 sbcie2g 2984 eqsbc1 2990 sbcralt 3027 sbcrext 3028 cbvralcsf 3107 cbvrexcsf 3108 cbvrabcsf 3110 abss 3211 ssab 3212 difrab 3396 abn0m 3434 prsspw 3745 disjnim 3973 brab1 4029 unopab 4061 exss 4205 uniuni 4429 elvvv 4667 eliunxp 4743 ralxp 4747 rexxp 4748 opelco 4776 reldm0 4822 resieq 4894 resiexg 4929 iss 4930 imai 4960 cnvsym 4987 intasym 4988 asymref 4989 codir 4992 poirr2 4996 rninxp 5047 cnvsom 5147 funopg 5222 fin 5374 f1cnvcnv 5404 fndmin 5592 resoprab 5938 mpo2eqb 5951 ov6g 5979 offval 6057 dfopab2 6157 dfoprab3s 6158 fmpox 6168 spc2ed 6201 brtpos0 6220 dftpos3 6230 tpostpos 6232 ercnv 6522 xpcomco 6792 xpassen 6796 phpm 6831 ctssdccl 7076 elni2 7255 elfz2nn0 10047 elfzmlbp 10067 clim0 11226 nnwosdc 11972 isstructim 12408 ntreq0 12772 cnmptcom 12938 dedekindicclemicc 13250 |
Copyright terms: Public domain | W3C validator |