| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3i | GIF version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr3i.1 | ⊢ (𝜓 ↔ 𝜑) |
| bitr3i.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| bitr3i | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3i.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | bicomi 132 | . 2 ⊢ (𝜑 ↔ 𝜓) |
| 3 | bitr3i.2 | . 2 ⊢ (𝜓 ↔ 𝜒) | |
| 4 | 2, 3 | bitri 184 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrri 207 3bitr3i 210 3bitr3ri 211 anandi 590 anandir 591 xchnxbi 682 orordi 775 orordir 776 sbco3v 1998 sbco4 2036 elsb1 2184 elsb2 2185 abeq1i 2318 cbvabw 2329 r19.41 2662 rexcom4a 2797 moeq 2949 mosubt 2951 2reuswapdc 2978 nfcdeq 2996 sbcid 3015 sbcco2 3022 sbc7 3026 sbcie2g 3033 eqsbc1 3039 sbcralt 3076 sbcrext 3077 cbvralcsf 3157 cbvrexcsf 3158 cbvrabcsf 3160 abss 3263 ssab 3264 difrab 3448 abn0m 3487 prsspw 3808 disjnim 4037 brab1 4095 unopab 4127 exss 4275 uniuni 4502 elvvv 4742 eliunxp 4821 ralxp 4825 rexxp 4826 opelco 4854 reldm0 4901 resieq 4974 resiexg 5009 iss 5010 imai 5043 cnvsym 5071 intasym 5072 asymref 5073 codir 5076 poirr2 5080 rninxp 5131 cnvsom 5231 funopg 5310 fin 5469 f1cnvcnv 5499 fndmin 5694 resoprab 6048 mpo2eqb 6062 ov6g 6091 offval 6173 dfopab2 6282 dfoprab3s 6283 fmpox 6293 spc2ed 6326 brtpos0 6345 dftpos3 6355 tpostpos 6357 ercnv 6648 xpcomco 6928 xpassen 6932 phpm 6969 ctssdccl 7220 elni2 7434 elfz2nn0 10241 elfzmlbp 10261 clim0 11640 nnwosdc 12404 isstructim 12890 xpscf 13223 srgrmhm 13800 ntreq0 14648 cnmptcom 14814 dedekindicclemicc 15148 |
| Copyright terms: Public domain | W3C validator |