Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr3i | GIF version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr3i.1 | ⊢ (𝜓 ↔ 𝜑) |
bitr3i.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
bitr3i | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3i.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | bicomi 131 | . 2 ⊢ (𝜑 ↔ 𝜓) |
3 | bitr3i.2 | . 2 ⊢ (𝜓 ↔ 𝜒) | |
4 | 2, 3 | bitri 183 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitrri 206 3bitr3i 209 3bitr3ri 210 anandi 585 anandir 586 xchnxbi 675 orordi 768 orordir 769 sbco3v 1962 sbco4 2000 elsb1 2148 elsb2 2149 abeq1i 2282 cbvabw 2293 r19.41 2625 rexcom4a 2754 moeq 2905 mosubt 2907 2reuswapdc 2934 nfcdeq 2952 sbcid 2970 sbcco2 2977 sbc7 2981 sbcie2g 2988 eqsbc1 2994 sbcralt 3031 sbcrext 3032 cbvralcsf 3111 cbvrexcsf 3112 cbvrabcsf 3114 abss 3216 ssab 3217 difrab 3401 abn0m 3440 prsspw 3752 disjnim 3980 brab1 4036 unopab 4068 exss 4212 uniuni 4436 elvvv 4674 eliunxp 4750 ralxp 4754 rexxp 4755 opelco 4783 reldm0 4829 resieq 4901 resiexg 4936 iss 4937 imai 4967 cnvsym 4994 intasym 4995 asymref 4996 codir 4999 poirr2 5003 rninxp 5054 cnvsom 5154 funopg 5232 fin 5384 f1cnvcnv 5414 fndmin 5603 resoprab 5949 mpo2eqb 5962 ov6g 5990 offval 6068 dfopab2 6168 dfoprab3s 6169 fmpox 6179 spc2ed 6212 brtpos0 6231 dftpos3 6241 tpostpos 6243 ercnv 6534 xpcomco 6804 xpassen 6808 phpm 6843 ctssdccl 7088 elni2 7276 elfz2nn0 10068 elfzmlbp 10088 clim0 11248 nnwosdc 11994 isstructim 12430 ntreq0 12926 cnmptcom 13092 dedekindicclemicc 13404 |
Copyright terms: Public domain | W3C validator |