| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3i | GIF version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr3i.1 | ⊢ (𝜓 ↔ 𝜑) |
| bitr3i.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| bitr3i | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3i.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | bicomi 132 | . 2 ⊢ (𝜑 ↔ 𝜓) |
| 3 | bitr3i.2 | . 2 ⊢ (𝜓 ↔ 𝜒) | |
| 4 | 2, 3 | bitri 184 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrri 207 3bitr3i 210 3bitr3ri 211 anandi 592 anandir 593 xchnxbi 684 orordi 778 orordir 779 sbco3v 2020 sbco4 2058 elsb1 2207 elsb2 2208 abeq1i 2341 cbvabw 2352 r19.41 2686 rexcom4a 2824 moeq 2978 mosubt 2980 2reuswapdc 3007 nfcdeq 3025 sbcid 3044 sbcco2 3051 sbc7 3055 sbcie2g 3062 eqsbc1 3068 sbcralt 3105 sbcrext 3106 cbvralcsf 3187 cbvrexcsf 3188 cbvrabcsf 3190 abss 3293 ssab 3294 difrab 3478 abn0m 3517 prsspw 3843 disjnim 4073 brab1 4131 unopab 4163 exss 4313 uniuni 4542 elvvv 4782 eliunxp 4861 ralxp 4865 rexxp 4866 opelco 4894 reldm0 4941 resieq 5015 resiexg 5050 iss 5051 imai 5084 cnvsym 5112 intasym 5113 asymref 5114 codir 5117 poirr2 5121 rninxp 5172 cnvsom 5272 funopg 5352 fin 5514 f1cnvcnv 5544 fndmin 5744 resoprab 6106 mpo2eqb 6120 ov6g 6149 offval 6232 dfopab2 6341 dfoprab3s 6342 fmpox 6352 spc2ed 6385 brtpos0 6404 dftpos3 6414 tpostpos 6416 ercnv 6709 xpcomco 6993 xpassen 6997 phpm 7035 ctssdccl 7286 elni2 7509 elfz2nn0 10316 elfzmlbp 10336 clim0 11804 nnwosdc 12568 isstructim 13054 xpscf 13388 srgrmhm 13965 ntreq0 14814 cnmptcom 14980 dedekindicclemicc 15314 |
| Copyright terms: Public domain | W3C validator |