Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orordir | GIF version |
Description: Distribution of disjunction over disjunction. (Contributed by NM, 25-Feb-1995.) |
Ref | Expression |
---|---|
orordir | ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ ((𝜑 ∨ 𝜒) ∨ (𝜓 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oridm 752 | . . 3 ⊢ ((𝜒 ∨ 𝜒) ↔ 𝜒) | |
2 | 1 | orbi2i 757 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ (𝜒 ∨ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
3 | or4 766 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ (𝜒 ∨ 𝜒)) ↔ ((𝜑 ∨ 𝜒) ∨ (𝜓 ∨ 𝜒))) | |
4 | 2, 3 | bitr3i 185 | 1 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ ((𝜑 ∨ 𝜒) ∨ (𝜓 ∨ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: elznn0 9227 |
Copyright terms: Public domain | W3C validator |