ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elznn0 GIF version

Theorem elznn0 9386
Description: Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
elznn0 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))

Proof of Theorem elznn0
StepHypRef Expression
1 elz 9373 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
2 elnn0 9296 . . . . . 6 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
32a1i 9 . . . . 5 (𝑁 ∈ ℝ → (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)))
4 elnn0 9296 . . . . . 6 (-𝑁 ∈ ℕ0 ↔ (-𝑁 ∈ ℕ ∨ -𝑁 = 0))
5 recn 8057 . . . . . . . . 9 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
6 0cn 8063 . . . . . . . . 9 0 ∈ ℂ
7 negcon1 8323 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 0 ∈ ℂ) → (-𝑁 = 0 ↔ -0 = 𝑁))
85, 6, 7sylancl 413 . . . . . . . 8 (𝑁 ∈ ℝ → (-𝑁 = 0 ↔ -0 = 𝑁))
9 neg0 8317 . . . . . . . . . 10 -0 = 0
109eqeq1i 2212 . . . . . . . . 9 (-0 = 𝑁 ↔ 0 = 𝑁)
11 eqcom 2206 . . . . . . . . 9 (0 = 𝑁𝑁 = 0)
1210, 11bitri 184 . . . . . . . 8 (-0 = 𝑁𝑁 = 0)
138, 12bitrdi 196 . . . . . . 7 (𝑁 ∈ ℝ → (-𝑁 = 0 ↔ 𝑁 = 0))
1413orbi2d 791 . . . . . 6 (𝑁 ∈ ℝ → ((-𝑁 ∈ ℕ ∨ -𝑁 = 0) ↔ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
154, 14bitrid 192 . . . . 5 (𝑁 ∈ ℝ → (-𝑁 ∈ ℕ0 ↔ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
163, 15orbi12d 794 . . . 4 (𝑁 ∈ ℝ → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0) ↔ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))))
17 3orass 983 . . . . 5 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 = 0 ∨ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
18 orcom 729 . . . . 5 ((𝑁 = 0 ∨ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ ((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ∨ 𝑁 = 0))
19 orordir 775 . . . . 5 (((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ∨ 𝑁 = 0) ↔ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
2017, 18, 193bitrri 207 . . . 4 (((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
2116, 20bitr2di 197 . . 3 (𝑁 ∈ ℝ → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
2221pm5.32i 454 . 2 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
231, 22bitri 184 1 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wo 709  w3o 979   = wceq 1372  wcel 2175  cc 7922  cr 7923  0cc0 7924  -cneg 8243  cn 9035  0cn0 9294  cz 9371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-setind 4584  ax-resscn 8016  ax-1cn 8017  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-sub 8244  df-neg 8245  df-n0 9295  df-z 9372
This theorem is referenced by:  peano2z  9407  zmulcl  9425  elz2  9443  expnegzap  10716  expaddzaplem  10725  odd2np1  12155  bezoutlemzz  12294  bezoutlemaz  12295  bezoutlembz  12296  mulgz  13457  mulgdirlem  13460  mulgdir  13461  mulgass  13466
  Copyright terms: Public domain W3C validator