ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swopo GIF version

Theorem swopo 4236
Description: A strict weak order is a partial order. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
swopo.1 ((𝜑 ∧ (𝑦𝐴𝑧𝐴)) → (𝑦𝑅𝑧 → ¬ 𝑧𝑅𝑦))
swopo.2 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))
Assertion
Ref Expression
swopo (𝜑𝑅 Po 𝐴)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑅,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem swopo
StepHypRef Expression
1 id 19 . . . . 5 (𝑥𝐴𝑥𝐴)
21ancli 321 . . . 4 (𝑥𝐴 → (𝑥𝐴𝑥𝐴))
3 swopo.1 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧𝐴)) → (𝑦𝑅𝑧 → ¬ 𝑧𝑅𝑦))
43ralrimivva 2517 . . . 4 (𝜑 → ∀𝑦𝐴𝑧𝐴 (𝑦𝑅𝑧 → ¬ 𝑧𝑅𝑦))
5 breq1 3940 . . . . . 6 (𝑦 = 𝑥 → (𝑦𝑅𝑧𝑥𝑅𝑧))
6 breq2 3941 . . . . . . 7 (𝑦 = 𝑥 → (𝑧𝑅𝑦𝑧𝑅𝑥))
76notbid 657 . . . . . 6 (𝑦 = 𝑥 → (¬ 𝑧𝑅𝑦 ↔ ¬ 𝑧𝑅𝑥))
85, 7imbi12d 233 . . . . 5 (𝑦 = 𝑥 → ((𝑦𝑅𝑧 → ¬ 𝑧𝑅𝑦) ↔ (𝑥𝑅𝑧 → ¬ 𝑧𝑅𝑥)))
9 breq2 3941 . . . . . 6 (𝑧 = 𝑥 → (𝑥𝑅𝑧𝑥𝑅𝑥))
10 breq1 3940 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝑅𝑥𝑥𝑅𝑥))
1110notbid 657 . . . . . 6 (𝑧 = 𝑥 → (¬ 𝑧𝑅𝑥 ↔ ¬ 𝑥𝑅𝑥))
129, 11imbi12d 233 . . . . 5 (𝑧 = 𝑥 → ((𝑥𝑅𝑧 → ¬ 𝑧𝑅𝑥) ↔ (𝑥𝑅𝑥 → ¬ 𝑥𝑅𝑥)))
138, 12rspc2va 2807 . . . 4 (((𝑥𝐴𝑥𝐴) ∧ ∀𝑦𝐴𝑧𝐴 (𝑦𝑅𝑧 → ¬ 𝑧𝑅𝑦)) → (𝑥𝑅𝑥 → ¬ 𝑥𝑅𝑥))
142, 4, 13syl2anr 288 . . 3 ((𝜑𝑥𝐴) → (𝑥𝑅𝑥 → ¬ 𝑥𝑅𝑥))
1514pm2.01d 608 . 2 ((𝜑𝑥𝐴) → ¬ 𝑥𝑅𝑥)
1633adantr1 1141 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑦𝑅𝑧 → ¬ 𝑧𝑅𝑦))
17 swopo.2 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))
1817imp 123 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑥𝑅𝑦) → (𝑥𝑅𝑧𝑧𝑅𝑦))
1918orcomd 719 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑥𝑅𝑦) → (𝑧𝑅𝑦𝑥𝑅𝑧))
2019ord 714 . . . 4 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑥𝑅𝑦) → (¬ 𝑧𝑅𝑦𝑥𝑅𝑧))
2120expimpd 361 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑦 ∧ ¬ 𝑧𝑅𝑦) → 𝑥𝑅𝑧))
2216, 21sylan2d 292 . 2 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
2315, 22ispod 4234 1 (𝜑𝑅 Po 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  w3a 963  wcel 1481  wral 2417   class class class wbr 3937   Po wpo 4224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-v 2691  df-un 3080  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-po 4226
This theorem is referenced by:  swoer  6465
  Copyright terms: Public domain W3C validator