Proof of Theorem absle
| Step | Hyp | Ref
| Expression |
| 1 | | simpll 527 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(abs‘𝐴) ≤ 𝐵) → 𝐴 ∈ ℝ) |
| 2 | 1 | renegcld 8423 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(abs‘𝐴) ≤ 𝐵) → -𝐴 ∈ ℝ) |
| 3 | 1 | recnd 8072 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(abs‘𝐴) ≤ 𝐵) → 𝐴 ∈ ℂ) |
| 4 | | abscl 11233 |
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(abs‘𝐴) ∈
ℝ) |
| 5 | 3, 4 | syl 14 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(abs‘𝐴) ≤ 𝐵) → (abs‘𝐴) ∈
ℝ) |
| 6 | | simplr 528 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(abs‘𝐴) ≤ 𝐵) → 𝐵 ∈ ℝ) |
| 7 | | leabs 11256 |
. . . . . . 7
⊢ (-𝐴 ∈ ℝ → -𝐴 ≤ (abs‘-𝐴)) |
| 8 | 2, 7 | syl 14 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(abs‘𝐴) ≤ 𝐵) → -𝐴 ≤ (abs‘-𝐴)) |
| 9 | | absneg 11232 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ →
(abs‘-𝐴) =
(abs‘𝐴)) |
| 10 | 3, 9 | syl 14 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(abs‘𝐴) ≤ 𝐵) → (abs‘-𝐴) = (abs‘𝐴)) |
| 11 | 8, 10 | breqtrd 4060 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(abs‘𝐴) ≤ 𝐵) → -𝐴 ≤ (abs‘𝐴)) |
| 12 | | simpr 110 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(abs‘𝐴) ≤ 𝐵) → (abs‘𝐴) ≤ 𝐵) |
| 13 | 2, 5, 6, 11, 12 | letrd 8167 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(abs‘𝐴) ≤ 𝐵) → -𝐴 ≤ 𝐵) |
| 14 | | leabs 11256 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) |
| 15 | 14 | ad2antrr 488 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(abs‘𝐴) ≤ 𝐵) → 𝐴 ≤ (abs‘𝐴)) |
| 16 | 1, 5, 6, 15, 12 | letrd 8167 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(abs‘𝐴) ≤ 𝐵) → 𝐴 ≤ 𝐵) |
| 17 | 13, 16 | jca 306 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(abs‘𝐴) ≤ 𝐵) → (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵)) |
| 18 | | simpll 527 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℝ) |
| 19 | | simplr 528 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵)) → 𝐵 ∈ ℝ) |
| 20 | 18 | recnd 8072 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℂ) |
| 21 | 20, 4 | syl 14 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵)) → (abs‘𝐴) ∈ ℝ) |
| 22 | | axltwlin 8111 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℝ ∧
(abs‘𝐴) ∈
ℝ ∧ 𝐴 ∈
ℝ) → (𝐵 <
(abs‘𝐴) → (𝐵 < 𝐴 ∨ 𝐴 < (abs‘𝐴)))) |
| 23 | 19, 21, 18, 22 | syl3anc 1249 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵)) → (𝐵 < (abs‘𝐴) → (𝐵 < 𝐴 ∨ 𝐴 < (abs‘𝐴)))) |
| 24 | | simprr 531 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ≤ 𝐵) |
| 25 | 18, 19 | lenltd 8161 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵)) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| 26 | 24, 25 | mpbid 147 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵)) → ¬ 𝐵 < 𝐴) |
| 27 | | pm2.53 723 |
. . . . . . . . 9
⊢ ((𝐵 < 𝐴 ∨ 𝐴 < (abs‘𝐴)) → (¬ 𝐵 < 𝐴 → 𝐴 < (abs‘𝐴))) |
| 28 | 23, 26, 27 | syl6ci 1456 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵)) → (𝐵 < (abs‘𝐴) → 𝐴 < (abs‘𝐴))) |
| 29 | | simpl 109 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 ∈ ℝ) |
| 30 | 29 | recnd 8072 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 ∈ ℂ) |
| 31 | 30, 9 | syl 14 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (abs‘-𝐴) = (abs‘𝐴)) |
| 32 | 29 | renegcld 8423 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → -𝐴 ∈ ℝ) |
| 33 | | 0red 8044 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 0 ∈
ℝ) |
| 34 | | ltabs 11269 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 < 0) |
| 35 | 29, 33, 34 | ltled 8162 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 ≤ 0) |
| 36 | 29 | le0neg1d 8561 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴)) |
| 37 | 35, 36 | mpbid 147 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 0 ≤ -𝐴) |
| 38 | | absid 11253 |
. . . . . . . . . 10
⊢ ((-𝐴 ∈ ℝ ∧ 0 ≤
-𝐴) →
(abs‘-𝐴) = -𝐴) |
| 39 | 32, 37, 38 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (abs‘-𝐴) = -𝐴) |
| 40 | 31, 39 | eqtr3d 2231 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (abs‘𝐴) = -𝐴) |
| 41 | 18, 28, 40 | syl6an 1445 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵)) → (𝐵 < (abs‘𝐴) → (abs‘𝐴) = -𝐴)) |
| 42 | | simprl 529 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵)) → -𝐴 ≤ 𝐵) |
| 43 | | breq1 4037 |
. . . . . . . 8
⊢
((abs‘𝐴) =
-𝐴 → ((abs‘𝐴) ≤ 𝐵 ↔ -𝐴 ≤ 𝐵)) |
| 44 | 42, 43 | syl5ibrcom 157 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵)) → ((abs‘𝐴) = -𝐴 → (abs‘𝐴) ≤ 𝐵)) |
| 45 | 41, 44 | syld 45 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵)) → (𝐵 < (abs‘𝐴) → (abs‘𝐴) ≤ 𝐵)) |
| 46 | 21, 19 | lenltd 8161 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵)) → ((abs‘𝐴) ≤ 𝐵 ↔ ¬ 𝐵 < (abs‘𝐴))) |
| 47 | 45, 46 | sylibd 149 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵)) → (𝐵 < (abs‘𝐴) → ¬ 𝐵 < (abs‘𝐴))) |
| 48 | 47 | pm2.01d 619 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵)) → ¬ 𝐵 < (abs‘𝐴)) |
| 49 | 48, 46 | mpbird 167 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵)) → (abs‘𝐴) ≤ 𝐵) |
| 50 | 17, 49 | impbida 596 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((abs‘𝐴) ≤ 𝐵 ↔ (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵))) |
| 51 | | lenegcon1 8510 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 ≤ 𝐵 ↔ -𝐵 ≤ 𝐴)) |
| 52 | 51 | anbi1d 465 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵) ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
| 53 | 50, 52 | bitrd 188 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |