ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absle GIF version

Theorem absle 11271
Description: Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
absle ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵𝐴𝐴𝐵)))

Proof of Theorem absle
StepHypRef Expression
1 simpll 527 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ∈ ℝ)
21renegcld 8423 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ∈ ℝ)
31recnd 8072 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ∈ ℂ)
4 abscl 11233 . . . . . 6 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
53, 4syl 14 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (abs‘𝐴) ∈ ℝ)
6 simplr 528 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐵 ∈ ℝ)
7 leabs 11256 . . . . . . 7 (-𝐴 ∈ ℝ → -𝐴 ≤ (abs‘-𝐴))
82, 7syl 14 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ≤ (abs‘-𝐴))
9 absneg 11232 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴))
103, 9syl 14 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (abs‘-𝐴) = (abs‘𝐴))
118, 10breqtrd 4060 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ≤ (abs‘𝐴))
12 simpr 110 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (abs‘𝐴) ≤ 𝐵)
132, 5, 6, 11, 12letrd 8167 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴𝐵)
14 leabs 11256 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴))
1514ad2antrr 488 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ≤ (abs‘𝐴))
161, 5, 6, 15, 12letrd 8167 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴𝐵)
1713, 16jca 306 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (-𝐴𝐵𝐴𝐵))
18 simpll 527 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → 𝐴 ∈ ℝ)
19 simplr 528 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → 𝐵 ∈ ℝ)
2018recnd 8072 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → 𝐴 ∈ ℂ)
2120, 4syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (abs‘𝐴) ∈ ℝ)
22 axltwlin 8111 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < (abs‘𝐴) → (𝐵 < 𝐴𝐴 < (abs‘𝐴))))
2319, 21, 18, 22syl3anc 1249 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (𝐵 < (abs‘𝐴) → (𝐵 < 𝐴𝐴 < (abs‘𝐴))))
24 simprr 531 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → 𝐴𝐵)
2518, 19lenltd 8161 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
2624, 25mpbid 147 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → ¬ 𝐵 < 𝐴)
27 pm2.53 723 . . . . . . . . 9 ((𝐵 < 𝐴𝐴 < (abs‘𝐴)) → (¬ 𝐵 < 𝐴𝐴 < (abs‘𝐴)))
2823, 26, 27syl6ci 1456 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (𝐵 < (abs‘𝐴) → 𝐴 < (abs‘𝐴)))
29 simpl 109 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 ∈ ℝ)
3029recnd 8072 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 ∈ ℂ)
3130, 9syl 14 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (abs‘-𝐴) = (abs‘𝐴))
3229renegcld 8423 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → -𝐴 ∈ ℝ)
33 0red 8044 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 0 ∈ ℝ)
34 ltabs 11269 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 < 0)
3529, 33, 34ltled 8162 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 ≤ 0)
3629le0neg1d 8561 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
3735, 36mpbid 147 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 0 ≤ -𝐴)
38 absid 11253 . . . . . . . . . 10 ((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) → (abs‘-𝐴) = -𝐴)
3932, 37, 38syl2anc 411 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (abs‘-𝐴) = -𝐴)
4031, 39eqtr3d 2231 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (abs‘𝐴) = -𝐴)
4118, 28, 40syl6an 1445 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (𝐵 < (abs‘𝐴) → (abs‘𝐴) = -𝐴))
42 simprl 529 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → -𝐴𝐵)
43 breq1 4037 . . . . . . . 8 ((abs‘𝐴) = -𝐴 → ((abs‘𝐴) ≤ 𝐵 ↔ -𝐴𝐵))
4442, 43syl5ibrcom 157 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → ((abs‘𝐴) = -𝐴 → (abs‘𝐴) ≤ 𝐵))
4541, 44syld 45 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (𝐵 < (abs‘𝐴) → (abs‘𝐴) ≤ 𝐵))
4621, 19lenltd 8161 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → ((abs‘𝐴) ≤ 𝐵 ↔ ¬ 𝐵 < (abs‘𝐴)))
4745, 46sylibd 149 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (𝐵 < (abs‘𝐴) → ¬ 𝐵 < (abs‘𝐴)))
4847pm2.01d 619 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → ¬ 𝐵 < (abs‘𝐴))
4948, 46mpbird 167 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (abs‘𝐴) ≤ 𝐵)
5017, 49impbida 596 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐴𝐵𝐴𝐵)))
51 lenegcon1 8510 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴𝐵 ↔ -𝐵𝐴))
5251anbi1d 465 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴𝐵𝐴𝐵) ↔ (-𝐵𝐴𝐴𝐵)))
5350, 52bitrd 188 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵𝐴𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167   class class class wbr 4034  cfv 5259  cc 7894  cr 7895  0cc0 7896   < clt 8078  cle 8079  -cneg 8215  abscabs 11179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181
This theorem is referenced by:  absdifle  11275  lenegsq  11277  abs2difabs  11290  abslei  11321  absled  11357  dfabsmax  11399  rpabscxpbnd  15260  lgseisen  15399
  Copyright terms: Public domain W3C validator