![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rennim | GIF version |
Description: A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013.) |
Ref | Expression |
---|---|
rennim | ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∉ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 7634 | . . . . . . 7 ⊢ i ∈ ℂ | |
2 | recn 7671 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
3 | mulcl 7665 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
4 | 1, 2, 3 | sylancr 408 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ) |
5 | rpre 9343 | . . . . . . 7 ⊢ ((i · 𝐴) ∈ ℝ+ → (i · 𝐴) ∈ ℝ) | |
6 | rereb 10522 | . . . . . . 7 ⊢ ((i · 𝐴) ∈ ℂ → ((i · 𝐴) ∈ ℝ ↔ (ℜ‘(i · 𝐴)) = (i · 𝐴))) | |
7 | 5, 6 | syl5ib 153 | . . . . . 6 ⊢ ((i · 𝐴) ∈ ℂ → ((i · 𝐴) ∈ ℝ+ → (ℜ‘(i · 𝐴)) = (i · 𝐴))) |
8 | 4, 7 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((i · 𝐴) ∈ ℝ+ → (ℜ‘(i · 𝐴)) = (i · 𝐴))) |
9 | 4 | addid2d 7829 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (0 + (i · 𝐴)) = (i · 𝐴)) |
10 | 9 | fveq2d 5377 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (ℜ‘(0 + (i · 𝐴))) = (ℜ‘(i · 𝐴))) |
11 | 0re 7684 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
12 | crre 10516 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (ℜ‘(0 + (i · 𝐴))) = 0) | |
13 | 11, 12 | mpan 418 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (ℜ‘(0 + (i · 𝐴))) = 0) |
14 | 10, 13 | eqtr3d 2147 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (ℜ‘(i · 𝐴)) = 0) |
15 | 14 | eqeq1d 2121 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((ℜ‘(i · 𝐴)) = (i · 𝐴) ↔ 0 = (i · 𝐴))) |
16 | 8, 15 | sylibd 148 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((i · 𝐴) ∈ ℝ+ → 0 = (i · 𝐴))) |
17 | rpne0 9352 | . . . . . 6 ⊢ ((i · 𝐴) ∈ ℝ+ → (i · 𝐴) ≠ 0) | |
18 | 17 | necon2bi 2335 | . . . . 5 ⊢ ((i · 𝐴) = 0 → ¬ (i · 𝐴) ∈ ℝ+) |
19 | 18 | eqcoms 2116 | . . . 4 ⊢ (0 = (i · 𝐴) → ¬ (i · 𝐴) ∈ ℝ+) |
20 | 16, 19 | syl6 33 | . . 3 ⊢ (𝐴 ∈ ℝ → ((i · 𝐴) ∈ ℝ+ → ¬ (i · 𝐴) ∈ ℝ+)) |
21 | 20 | pm2.01d 590 | . 2 ⊢ (𝐴 ∈ ℝ → ¬ (i · 𝐴) ∈ ℝ+) |
22 | df-nel 2376 | . 2 ⊢ ((i · 𝐴) ∉ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+) | |
23 | 21, 22 | sylibr 133 | 1 ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∉ ℝ+) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1312 ∈ wcel 1461 ∉ wnel 2375 ‘cfv 5079 (class class class)co 5726 ℂcc 7539 ℝcr 7540 0cc0 7541 ici 7543 + caddc 7544 · cmul 7546 ℝ+crp 9337 ℜcre 10499 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-cnex 7630 ax-resscn 7631 ax-1cn 7632 ax-1re 7633 ax-icn 7634 ax-addcl 7635 ax-addrcl 7636 ax-mulcl 7637 ax-mulrcl 7638 ax-addcom 7639 ax-mulcom 7640 ax-addass 7641 ax-mulass 7642 ax-distr 7643 ax-i2m1 7644 ax-0lt1 7645 ax-1rid 7646 ax-0id 7647 ax-rnegex 7648 ax-precex 7649 ax-cnre 7650 ax-pre-ltirr 7651 ax-pre-ltwlin 7652 ax-pre-lttrn 7653 ax-pre-apti 7654 ax-pre-ltadd 7655 ax-pre-mulgt0 7656 ax-pre-mulext 7657 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-reu 2395 df-rmo 2396 df-rab 2397 df-v 2657 df-sbc 2877 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-opab 3948 df-mpt 3949 df-id 4173 df-po 4176 df-iso 4177 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-fv 5087 df-riota 5682 df-ov 5729 df-oprab 5730 df-mpo 5731 df-pnf 7720 df-mnf 7721 df-xr 7722 df-ltxr 7723 df-le 7724 df-sub 7852 df-neg 7853 df-reap 8249 df-ap 8256 df-div 8340 df-2 8683 df-rp 9338 df-cj 10501 df-re 10502 df-im 10503 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |