ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rennim GIF version

Theorem rennim 11149
Description: A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013.)
Assertion
Ref Expression
rennim (𝐴 ∈ ℝ → (i · 𝐴) ∉ ℝ+)

Proof of Theorem rennim
StepHypRef Expression
1 ax-icn 7969 . . . . . . 7 i ∈ ℂ
2 recn 8007 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 mulcl 8001 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
41, 2, 3sylancr 414 . . . . . 6 (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ)
5 rpre 9729 . . . . . . 7 ((i · 𝐴) ∈ ℝ+ → (i · 𝐴) ∈ ℝ)
6 rereb 11010 . . . . . . 7 ((i · 𝐴) ∈ ℂ → ((i · 𝐴) ∈ ℝ ↔ (ℜ‘(i · 𝐴)) = (i · 𝐴)))
75, 6imbitrid 154 . . . . . 6 ((i · 𝐴) ∈ ℂ → ((i · 𝐴) ∈ ℝ+ → (ℜ‘(i · 𝐴)) = (i · 𝐴)))
84, 7syl 14 . . . . 5 (𝐴 ∈ ℝ → ((i · 𝐴) ∈ ℝ+ → (ℜ‘(i · 𝐴)) = (i · 𝐴)))
94addlidd 8171 . . . . . . . 8 (𝐴 ∈ ℝ → (0 + (i · 𝐴)) = (i · 𝐴))
109fveq2d 5559 . . . . . . 7 (𝐴 ∈ ℝ → (ℜ‘(0 + (i · 𝐴))) = (ℜ‘(i · 𝐴)))
11 0re 8021 . . . . . . . 8 0 ∈ ℝ
12 crre 11004 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (ℜ‘(0 + (i · 𝐴))) = 0)
1311, 12mpan 424 . . . . . . 7 (𝐴 ∈ ℝ → (ℜ‘(0 + (i · 𝐴))) = 0)
1410, 13eqtr3d 2228 . . . . . 6 (𝐴 ∈ ℝ → (ℜ‘(i · 𝐴)) = 0)
1514eqeq1d 2202 . . . . 5 (𝐴 ∈ ℝ → ((ℜ‘(i · 𝐴)) = (i · 𝐴) ↔ 0 = (i · 𝐴)))
168, 15sylibd 149 . . . 4 (𝐴 ∈ ℝ → ((i · 𝐴) ∈ ℝ+ → 0 = (i · 𝐴)))
17 rpne0 9738 . . . . . 6 ((i · 𝐴) ∈ ℝ+ → (i · 𝐴) ≠ 0)
1817necon2bi 2419 . . . . 5 ((i · 𝐴) = 0 → ¬ (i · 𝐴) ∈ ℝ+)
1918eqcoms 2196 . . . 4 (0 = (i · 𝐴) → ¬ (i · 𝐴) ∈ ℝ+)
2016, 19syl6 33 . . 3 (𝐴 ∈ ℝ → ((i · 𝐴) ∈ ℝ+ → ¬ (i · 𝐴) ∈ ℝ+))
2120pm2.01d 619 . 2 (𝐴 ∈ ℝ → ¬ (i · 𝐴) ∈ ℝ+)
22 df-nel 2460 . 2 ((i · 𝐴) ∉ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+)
2321, 22sylibr 134 1 (𝐴 ∈ ℝ → (i · 𝐴) ∉ ℝ+)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1364  wcel 2164  wnel 2459  cfv 5255  (class class class)co 5919  cc 7872  cr 7873  0cc0 7874  ici 7876   + caddc 7877   · cmul 7879  +crp 9722  cre 10987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-2 9043  df-rp 9723  df-cj 10989  df-re 10990  df-im 10991
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator