![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rennim | GIF version |
Description: A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013.) |
Ref | Expression |
---|---|
rennim | ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∉ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 7967 | . . . . . . 7 ⊢ i ∈ ℂ | |
2 | recn 8005 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
3 | mulcl 7999 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
4 | 1, 2, 3 | sylancr 414 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ) |
5 | rpre 9726 | . . . . . . 7 ⊢ ((i · 𝐴) ∈ ℝ+ → (i · 𝐴) ∈ ℝ) | |
6 | rereb 11007 | . . . . . . 7 ⊢ ((i · 𝐴) ∈ ℂ → ((i · 𝐴) ∈ ℝ ↔ (ℜ‘(i · 𝐴)) = (i · 𝐴))) | |
7 | 5, 6 | imbitrid 154 | . . . . . 6 ⊢ ((i · 𝐴) ∈ ℂ → ((i · 𝐴) ∈ ℝ+ → (ℜ‘(i · 𝐴)) = (i · 𝐴))) |
8 | 4, 7 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((i · 𝐴) ∈ ℝ+ → (ℜ‘(i · 𝐴)) = (i · 𝐴))) |
9 | 4 | addlidd 8169 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (0 + (i · 𝐴)) = (i · 𝐴)) |
10 | 9 | fveq2d 5558 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (ℜ‘(0 + (i · 𝐴))) = (ℜ‘(i · 𝐴))) |
11 | 0re 8019 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
12 | crre 11001 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (ℜ‘(0 + (i · 𝐴))) = 0) | |
13 | 11, 12 | mpan 424 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (ℜ‘(0 + (i · 𝐴))) = 0) |
14 | 10, 13 | eqtr3d 2228 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (ℜ‘(i · 𝐴)) = 0) |
15 | 14 | eqeq1d 2202 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((ℜ‘(i · 𝐴)) = (i · 𝐴) ↔ 0 = (i · 𝐴))) |
16 | 8, 15 | sylibd 149 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((i · 𝐴) ∈ ℝ+ → 0 = (i · 𝐴))) |
17 | rpne0 9735 | . . . . . 6 ⊢ ((i · 𝐴) ∈ ℝ+ → (i · 𝐴) ≠ 0) | |
18 | 17 | necon2bi 2419 | . . . . 5 ⊢ ((i · 𝐴) = 0 → ¬ (i · 𝐴) ∈ ℝ+) |
19 | 18 | eqcoms 2196 | . . . 4 ⊢ (0 = (i · 𝐴) → ¬ (i · 𝐴) ∈ ℝ+) |
20 | 16, 19 | syl6 33 | . . 3 ⊢ (𝐴 ∈ ℝ → ((i · 𝐴) ∈ ℝ+ → ¬ (i · 𝐴) ∈ ℝ+)) |
21 | 20 | pm2.01d 619 | . 2 ⊢ (𝐴 ∈ ℝ → ¬ (i · 𝐴) ∈ ℝ+) |
22 | df-nel 2460 | . 2 ⊢ ((i · 𝐴) ∉ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+) | |
23 | 21, 22 | sylibr 134 | 1 ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∉ ℝ+) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2164 ∉ wnel 2459 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 ℝcr 7871 0cc0 7872 ici 7874 + caddc 7875 · cmul 7877 ℝ+crp 9719 ℜcre 10984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-2 9041 df-rp 9720 df-cj 10986 df-re 10987 df-im 10988 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |