ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.1dc GIF version

Theorem pm2.1dc 827
Description: Commuted law of the excluded middle for a decidable proposition. Based on theorem *2.1 of [WhiteheadRussell] p. 101. (Contributed by Jim Kingdon, 25-Mar-2018.)
Assertion
Ref Expression
pm2.1dc (DECID 𝜑 → (¬ 𝜑𝜑))

Proof of Theorem pm2.1dc
StepHypRef Expression
1 df-dc 825 . . 3 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 orcom 718 . . 3 ((𝜑 ∨ ¬ 𝜑) ↔ (¬ 𝜑𝜑))
31, 2bitri 183 . 2 (DECID 𝜑 ↔ (¬ 𝜑𝜑))
43biimpi 119 1 (DECID 𝜑 → (¬ 𝜑𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 698  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 825
This theorem is referenced by:  pm2.6dc  852  rabrsndc  3644
  Copyright terms: Public domain W3C validator