Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcbid | GIF version |
Description: Equivalence property for decidability. Deduction form. (Contributed by Jim Kingdon, 7-Sep-2019.) |
Ref | Expression |
---|---|
dcbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
dcbid | ⊢ (𝜑 → (DECID 𝜓 ↔ DECID 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | notbid 657 | . . 3 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
3 | 1, 2 | orbi12d 783 | . 2 ⊢ (𝜑 → ((𝜓 ∨ ¬ 𝜓) ↔ (𝜒 ∨ ¬ 𝜒))) |
4 | df-dc 821 | . 2 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
5 | df-dc 821 | . 2 ⊢ (DECID 𝜒 ↔ (𝜒 ∨ ¬ 𝜒)) | |
6 | 3, 4, 5 | 3bitr4g 222 | 1 ⊢ (𝜑 → (DECID 𝜓 ↔ DECID 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∨ wo 698 DECID wdc 820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-dc 821 |
This theorem is referenced by: dcbiit 825 exmidexmid 4158 exmidel 4167 dcdifsnid 6452 finexdc 6848 pw1dc1 6859 undifdcss 6868 ssfirab 6879 fidcenumlemrks 6898 dcfi 6926 difinfsnlem 7044 difinfsn 7045 ctssdclemn0 7055 ctssdccl 7056 ctssdclemr 7057 ctssdc 7058 iswomni 7109 enwomnilem 7113 ltdcpi 7244 enqdc 7282 enqdc1 7283 ltdcnq 7318 fzodcel 10055 exfzdc 10143 sumeq1 11256 sumdc 11259 summodclem2 11283 summodc 11284 zsumdc 11285 fsum3 11288 isumz 11290 isumss 11292 fisumss 11293 isumss2 11294 fsum3cvg2 11295 fsumsersdc 11296 fsumsplit 11308 prodeq1f 11453 prodmodclem2a 11477 prodmodclem2 11478 prodmodc 11479 zproddc 11480 fprodseq 11484 prod1dc 11487 prodssdc 11490 fprodssdc 11491 fprodsplitdc 11497 dvdsdc 11698 zdvdsdc 11712 zsupcllemstep 11836 infssuzex 11840 nninfdcex 11843 hashdvds 12100 eulerthlemfi 12107 phisum 12119 ennnfonelemr 12194 ennnfonelemim 12195 ctinf 12201 ctiunctlemudc 12208 ctiunct 12211 ssomct 12216 ssnnctlemct 12217 nnmindc 12219 nnminle 12220 nninfdclemcl 12221 nninfdclemp1 12223 sumdc2 13415 bj-charfundcALT 13426 bj-charfunbi 13428 nninfsellemdc 13624 iswomninnlem 13662 iswomni0 13664 redcwlpo 13668 redc0 13670 reap0 13671 dceqnconst 13672 dcapnconst 13673 |
Copyright terms: Public domain | W3C validator |