Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcbid | GIF version |
Description: Equivalence property for decidability. Deduction form. (Contributed by Jim Kingdon, 7-Sep-2019.) |
Ref | Expression |
---|---|
dcbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
dcbid | ⊢ (𝜑 → (DECID 𝜓 ↔ DECID 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | notbid 657 | . . 3 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
3 | 1, 2 | orbi12d 783 | . 2 ⊢ (𝜑 → ((𝜓 ∨ ¬ 𝜓) ↔ (𝜒 ∨ ¬ 𝜒))) |
4 | df-dc 825 | . 2 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
5 | df-dc 825 | . 2 ⊢ (DECID 𝜒 ↔ (𝜒 ∨ ¬ 𝜒)) | |
6 | 3, 4, 5 | 3bitr4g 222 | 1 ⊢ (𝜑 → (DECID 𝜓 ↔ DECID 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∨ wo 698 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-dc 825 |
This theorem is referenced by: dcbiit 829 exmidexmid 4174 exmidel 4183 dcdifsnid 6468 finexdc 6864 pw1dc1 6875 undifdcss 6884 ssfirab 6895 fidcenumlemrks 6914 dcfi 6942 difinfsnlem 7060 difinfsn 7061 ctssdclemn0 7071 ctssdccl 7072 ctssdclemr 7073 ctssdc 7074 iswomni 7125 enwomnilem 7129 ltdcpi 7260 enqdc 7298 enqdc1 7299 ltdcnq 7334 fzodcel 10083 exfzdc 10171 sumeq1 11292 sumdc 11295 summodclem2 11319 summodc 11320 zsumdc 11321 fsum3 11324 isumz 11326 isumss 11328 fisumss 11329 isumss2 11330 fsum3cvg2 11331 fsumsersdc 11332 fsumsplit 11344 prodeq1f 11489 prodmodclem2a 11513 prodmodclem2 11514 prodmodc 11515 zproddc 11516 fprodseq 11520 prod1dc 11523 prodssdc 11526 fprodssdc 11527 fprodsplitdc 11533 dvdsdc 11734 zdvdsdc 11748 zsupcllemstep 11874 infssuzex 11878 suprzubdc 11881 nninfdcex 11882 zsupssdc 11883 nnmindc 11963 nnminle 11964 uzwodc 11966 nnwosdc 11968 hashdvds 12149 eulerthlemfi 12156 phisum 12168 infpnlem2 12286 1arith 12293 ennnfonelemr 12352 ennnfonelemim 12353 ctinf 12359 ctiunctlemudc 12366 ctiunct 12369 ssomct 12374 ssnnctlemct 12375 nninfdclemcl 12377 nninfdclemp1 12379 lgsval 13505 lgsfvalg 13506 lgsfcl2 13507 lgsval2lem 13511 lgsdir2 13534 lgsne0 13539 sumdc2 13640 bj-charfundcALT 13651 bj-charfunbi 13653 nninfsellemdc 13850 iswomninnlem 13888 iswomni0 13890 redcwlpo 13894 redc0 13896 reap0 13897 dceqnconst 13898 dcapnconst 13899 |
Copyright terms: Public domain | W3C validator |