Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcbid | GIF version |
Description: Equivalence property for decidability. Deduction form. (Contributed by Jim Kingdon, 7-Sep-2019.) |
Ref | Expression |
---|---|
dcbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
dcbid | ⊢ (𝜑 → (DECID 𝜓 ↔ DECID 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | notbid 662 | . . 3 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
3 | 1, 2 | orbi12d 788 | . 2 ⊢ (𝜑 → ((𝜓 ∨ ¬ 𝜓) ↔ (𝜒 ∨ ¬ 𝜒))) |
4 | df-dc 830 | . 2 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
5 | df-dc 830 | . 2 ⊢ (DECID 𝜒 ↔ (𝜒 ∨ ¬ 𝜒)) | |
6 | 3, 4, 5 | 3bitr4g 222 | 1 ⊢ (𝜑 → (DECID 𝜓 ↔ DECID 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∨ wo 703 DECID wdc 829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-dc 830 |
This theorem is referenced by: dcbiit 834 exmidexmid 4182 exmidel 4191 dcdifsnid 6483 finexdc 6880 pw1dc1 6891 undifdcss 6900 ssfirab 6911 fidcenumlemrks 6930 dcfi 6958 difinfsnlem 7076 difinfsn 7077 ctssdclemn0 7087 ctssdccl 7088 ctssdclemr 7089 ctssdc 7090 iswomni 7141 enwomnilem 7145 nninfdcinf 7147 nninfwlporlem 7149 nninfwlpoimlemdc 7153 nninfwlpoim 7154 ltdcpi 7285 enqdc 7323 enqdc1 7324 ltdcnq 7359 fzodcel 10108 exfzdc 10196 sumeq1 11318 sumdc 11321 summodclem2 11345 summodc 11346 zsumdc 11347 fsum3 11350 isumz 11352 isumss 11354 fisumss 11355 isumss2 11356 fsum3cvg2 11357 fsumsersdc 11358 fsumsplit 11370 prodeq1f 11515 prodmodclem2a 11539 prodmodclem2 11540 prodmodc 11541 zproddc 11542 fprodseq 11546 prod1dc 11549 prodssdc 11552 fprodssdc 11553 fprodsplitdc 11559 dvdsdc 11760 zdvdsdc 11774 zsupcllemstep 11900 infssuzex 11904 suprzubdc 11907 nninfdcex 11908 zsupssdc 11909 nnmindc 11989 nnminle 11990 uzwodc 11992 nnwosdc 11994 hashdvds 12175 eulerthlemfi 12182 phisum 12194 infpnlem2 12312 1arith 12319 ennnfonelemr 12378 ennnfonelemim 12379 ctinf 12385 ctiunctlemudc 12392 ctiunct 12395 ssomct 12400 ssnnctlemct 12401 nninfdclemcl 12403 nninfdclemp1 12405 lgsval 13699 lgsfvalg 13700 lgsfcl2 13701 lgsval2lem 13705 lgsdir2 13728 lgsne0 13733 sumdc2 13834 bj-charfundcALT 13844 bj-charfunbi 13846 nninfsellemdc 14043 iswomninnlem 14081 iswomni0 14083 redcwlpo 14087 redc0 14089 reap0 14090 dceqnconst 14091 dcapnconst 14092 |
Copyright terms: Public domain | W3C validator |