![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dcbid | GIF version |
Description: Equivalence property for decidability. Deduction form. (Contributed by Jim Kingdon, 7-Sep-2019.) |
Ref | Expression |
---|---|
dcbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
dcbid | ⊢ (𝜑 → (DECID 𝜓 ↔ DECID 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | notbid 667 | . . 3 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
3 | 1, 2 | orbi12d 793 | . 2 ⊢ (𝜑 → ((𝜓 ∨ ¬ 𝜓) ↔ (𝜒 ∨ ¬ 𝜒))) |
4 | df-dc 835 | . 2 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
5 | df-dc 835 | . 2 ⊢ (DECID 𝜒 ↔ (𝜒 ∨ ¬ 𝜒)) | |
6 | 3, 4, 5 | 3bitr4g 223 | 1 ⊢ (𝜑 → (DECID 𝜓 ↔ DECID 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 708 DECID wdc 834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 |
This theorem depends on definitions: df-bi 117 df-dc 835 |
This theorem is referenced by: dcbiit 839 exmidexmid 4198 exmidel 4207 dcdifsnid 6508 finexdc 6905 pw1dc1 6916 undifdcss 6925 ssfirab 6936 fidcenumlemrks 6955 dcfi 6983 difinfsnlem 7101 difinfsn 7102 ctssdclemn0 7112 ctssdccl 7113 ctssdclemr 7114 ctssdc 7115 iswomni 7166 enwomnilem 7170 nninfdcinf 7172 nninfwlporlem 7174 nninfwlpoimlemdc 7178 nninfwlpoim 7179 netap 7256 ltdcpi 7325 enqdc 7363 enqdc1 7364 ltdcnq 7399 fzodcel 10155 exfzdc 10243 sumeq1 11366 sumdc 11369 summodclem2 11393 summodc 11394 zsumdc 11395 fsum3 11398 isumz 11400 isumss 11402 fisumss 11403 isumss2 11404 fsum3cvg2 11405 fsumsersdc 11406 fsumsplit 11418 prodeq1f 11563 prodmodclem2a 11587 prodmodclem2 11588 prodmodc 11589 zproddc 11590 fprodseq 11594 prod1dc 11597 prodssdc 11600 fprodssdc 11601 fprodsplitdc 11607 dvdsdc 11808 zdvdsdc 11822 zsupcllemstep 11949 infssuzex 11953 suprzubdc 11956 nninfdcex 11957 zsupssdc 11958 nnmindc 12038 nnminle 12039 uzwodc 12041 nnwosdc 12043 hashdvds 12224 eulerthlemfi 12231 phisum 12243 infpnlem2 12361 1arith 12368 ennnfonelemr 12427 ennnfonelemim 12428 ctinf 12434 ctiunctlemudc 12441 ctiunct 12444 ssomct 12449 ssnnctlemct 12450 nninfdclemcl 12452 nninfdclemp1 12454 lgsval 14593 lgsfvalg 14594 lgsfcl2 14595 lgsval2lem 14599 lgsdir2 14622 lgsne0 14627 sumdc2 14739 bj-charfundcALT 14749 bj-charfunbi 14751 nninfsellemdc 14948 iswomninnlem 14986 iswomni0 14988 redcwlpo 14992 redc0 14994 reap0 14995 cndcap 14996 dceqnconst 14997 dcapnconst 14998 |
Copyright terms: Public domain | W3C validator |