![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dcbid | GIF version |
Description: Equivalence property for decidability. Deduction form. (Contributed by Jim Kingdon, 7-Sep-2019.) |
Ref | Expression |
---|---|
dcbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
dcbid | ⊢ (𝜑 → (DECID 𝜓 ↔ DECID 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | notbid 667 | . . 3 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
3 | 1, 2 | orbi12d 793 | . 2 ⊢ (𝜑 → ((𝜓 ∨ ¬ 𝜓) ↔ (𝜒 ∨ ¬ 𝜒))) |
4 | df-dc 835 | . 2 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
5 | df-dc 835 | . 2 ⊢ (DECID 𝜒 ↔ (𝜒 ∨ ¬ 𝜒)) | |
6 | 3, 4, 5 | 3bitr4g 223 | 1 ⊢ (𝜑 → (DECID 𝜓 ↔ DECID 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 708 DECID wdc 834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 |
This theorem depends on definitions: df-bi 117 df-dc 835 |
This theorem is referenced by: dcbiit 839 exmidexmid 4196 exmidel 4205 dcdifsnid 6504 finexdc 6901 pw1dc1 6912 undifdcss 6921 ssfirab 6932 fidcenumlemrks 6951 dcfi 6979 difinfsnlem 7097 difinfsn 7098 ctssdclemn0 7108 ctssdccl 7109 ctssdclemr 7110 ctssdc 7111 iswomni 7162 enwomnilem 7166 nninfdcinf 7168 nninfwlporlem 7170 nninfwlpoimlemdc 7174 nninfwlpoim 7175 netap 7252 ltdcpi 7321 enqdc 7359 enqdc1 7360 ltdcnq 7395 fzodcel 10151 exfzdc 10239 sumeq1 11362 sumdc 11365 summodclem2 11389 summodc 11390 zsumdc 11391 fsum3 11394 isumz 11396 isumss 11398 fisumss 11399 isumss2 11400 fsum3cvg2 11401 fsumsersdc 11402 fsumsplit 11414 prodeq1f 11559 prodmodclem2a 11583 prodmodclem2 11584 prodmodc 11585 zproddc 11586 fprodseq 11590 prod1dc 11593 prodssdc 11596 fprodssdc 11597 fprodsplitdc 11603 dvdsdc 11804 zdvdsdc 11818 zsupcllemstep 11945 infssuzex 11949 suprzubdc 11952 nninfdcex 11953 zsupssdc 11954 nnmindc 12034 nnminle 12035 uzwodc 12037 nnwosdc 12039 hashdvds 12220 eulerthlemfi 12227 phisum 12239 infpnlem2 12357 1arith 12364 ennnfonelemr 12423 ennnfonelemim 12424 ctinf 12430 ctiunctlemudc 12437 ctiunct 12440 ssomct 12445 ssnnctlemct 12446 nninfdclemcl 12448 nninfdclemp1 12450 lgsval 14375 lgsfvalg 14376 lgsfcl2 14377 lgsval2lem 14381 lgsdir2 14404 lgsne0 14409 sumdc2 14521 bj-charfundcALT 14531 bj-charfunbi 14533 nninfsellemdc 14729 iswomninnlem 14767 iswomni0 14769 redcwlpo 14773 redc0 14775 reap0 14776 dceqnconst 14777 dcapnconst 14778 |
Copyright terms: Public domain | W3C validator |