ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabrsndc GIF version

Theorem rabrsndc 3711
Description: A class abstraction over a decidable proposition restricted to a singleton is either the empty set or the singleton itself. (Contributed by Jim Kingdon, 8-Aug-2018.)
Hypotheses
Ref Expression
rabrsndc.1 𝐴 ∈ V
rabrsndc.2 DECID 𝜑
Assertion
Ref Expression
rabrsndc (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ∨ 𝑀 = {𝐴}))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑀(𝑥)

Proof of Theorem rabrsndc
StepHypRef Expression
1 rabrsndc.1 . . . . . 6 𝐴 ∈ V
2 rabrsndc.2 . . . . . . . 8 DECID 𝜑
3 pm2.1dc 839 . . . . . . . 8 (DECID 𝜑 → (¬ 𝜑𝜑))
42, 3ax-mp 5 . . . . . . 7 𝜑𝜑)
54sbcth 3019 . . . . . 6 (𝐴 ∈ V → [𝐴 / 𝑥]𝜑𝜑))
61, 5ax-mp 5 . . . . 5 [𝐴 / 𝑥]𝜑𝜑)
7 sbcor 3050 . . . . 5 ([𝐴 / 𝑥]𝜑𝜑) ↔ ([𝐴 / 𝑥] ¬ 𝜑[𝐴 / 𝑥]𝜑))
86, 7mpbi 145 . . . 4 ([𝐴 / 𝑥] ¬ 𝜑[𝐴 / 𝑥]𝜑)
9 ralsns 3681 . . . . . 6 (𝐴 ∈ V → (∀𝑥 ∈ {𝐴} ¬ 𝜑[𝐴 / 𝑥] ¬ 𝜑))
101, 9ax-mp 5 . . . . 5 (∀𝑥 ∈ {𝐴} ¬ 𝜑[𝐴 / 𝑥] ¬ 𝜑)
11 ralsns 3681 . . . . . 6 (𝐴 ∈ V → (∀𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑))
121, 11ax-mp 5 . . . . 5 (∀𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑)
1310, 12orbi12i 766 . . . 4 ((∀𝑥 ∈ {𝐴} ¬ 𝜑 ∨ ∀𝑥 ∈ {𝐴}𝜑) ↔ ([𝐴 / 𝑥] ¬ 𝜑[𝐴 / 𝑥]𝜑))
148, 13mpbir 146 . . 3 (∀𝑥 ∈ {𝐴} ¬ 𝜑 ∨ ∀𝑥 ∈ {𝐴}𝜑)
15 rabeq0 3498 . . . 4 ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ {𝐴} ¬ 𝜑)
16 eqcom 2209 . . . . 5 ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} ↔ {𝐴} = {𝑥 ∈ {𝐴} ∣ 𝜑})
17 rabid2 2685 . . . . 5 ({𝐴} = {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ ∀𝑥 ∈ {𝐴}𝜑)
1816, 17bitri 184 . . . 4 ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} ↔ ∀𝑥 ∈ {𝐴}𝜑)
1915, 18orbi12i 766 . . 3 (({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) ↔ (∀𝑥 ∈ {𝐴} ¬ 𝜑 ∨ ∀𝑥 ∈ {𝐴}𝜑))
2014, 19mpbir 146 . 2 ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴})
21 eqeq1 2214 . . 3 (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ↔ {𝑥 ∈ {𝐴} ∣ 𝜑} = ∅))
22 eqeq1 2214 . . 3 (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = {𝐴} ↔ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}))
2321, 22orbi12d 795 . 2 (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → ((𝑀 = ∅ ∨ 𝑀 = {𝐴}) ↔ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴})))
2420, 23mpbiri 168 1 (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ∨ 𝑀 = {𝐴}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2178  wral 2486  {crab 2490  Vcvv 2776  [wsbc 3005  c0 3468  {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-nul 3469  df-sn 3649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator