Proof of Theorem rabrsndc
| Step | Hyp | Ref
| Expression |
| 1 | | rabrsndc.1 |
. . . . . 6
⊢ 𝐴 ∈ V |
| 2 | | rabrsndc.2 |
. . . . . . . 8
⊢
DECID 𝜑 |
| 3 | | pm2.1dc 838 |
. . . . . . . 8
⊢
(DECID 𝜑 → (¬ 𝜑 ∨ 𝜑)) |
| 4 | 2, 3 | ax-mp 5 |
. . . . . . 7
⊢ (¬
𝜑 ∨ 𝜑) |
| 5 | 4 | sbcth 3003 |
. . . . . 6
⊢ (𝐴 ∈ V → [𝐴 / 𝑥](¬ 𝜑 ∨ 𝜑)) |
| 6 | 1, 5 | ax-mp 5 |
. . . . 5
⊢
[𝐴 / 𝑥](¬ 𝜑 ∨ 𝜑) |
| 7 | | sbcor 3034 |
. . . . 5
⊢
([𝐴 / 𝑥](¬ 𝜑 ∨ 𝜑) ↔ ([𝐴 / 𝑥] ¬ 𝜑 ∨ [𝐴 / 𝑥]𝜑)) |
| 8 | 6, 7 | mpbi 145 |
. . . 4
⊢
([𝐴 / 𝑥] ¬ 𝜑 ∨ [𝐴 / 𝑥]𝜑) |
| 9 | | ralsns 3660 |
. . . . . 6
⊢ (𝐴 ∈ V → (∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ [𝐴 / 𝑥] ¬ 𝜑)) |
| 10 | 1, 9 | ax-mp 5 |
. . . . 5
⊢
(∀𝑥 ∈
{𝐴} ¬ 𝜑 ↔ [𝐴 / 𝑥] ¬ 𝜑) |
| 11 | | ralsns 3660 |
. . . . . 6
⊢ (𝐴 ∈ V → (∀𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| 12 | 1, 11 | ax-mp 5 |
. . . . 5
⊢
(∀𝑥 ∈
{𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑) |
| 13 | 10, 12 | orbi12i 765 |
. . . 4
⊢
((∀𝑥 ∈
{𝐴} ¬ 𝜑 ∨ ∀𝑥 ∈ {𝐴}𝜑) ↔ ([𝐴 / 𝑥] ¬ 𝜑 ∨ [𝐴 / 𝑥]𝜑)) |
| 14 | 8, 13 | mpbir 146 |
. . 3
⊢
(∀𝑥 ∈
{𝐴} ¬ 𝜑 ∨ ∀𝑥 ∈ {𝐴}𝜑) |
| 15 | | rabeq0 3480 |
. . . 4
⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ {𝐴} ¬ 𝜑) |
| 16 | | eqcom 2198 |
. . . . 5
⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} ↔ {𝐴} = {𝑥 ∈ {𝐴} ∣ 𝜑}) |
| 17 | | rabid2 2674 |
. . . . 5
⊢ ({𝐴} = {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ ∀𝑥 ∈ {𝐴}𝜑) |
| 18 | 16, 17 | bitri 184 |
. . . 4
⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} ↔ ∀𝑥 ∈ {𝐴}𝜑) |
| 19 | 15, 18 | orbi12i 765 |
. . 3
⊢ (({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) ↔ (∀𝑥 ∈ {𝐴} ¬ 𝜑 ∨ ∀𝑥 ∈ {𝐴}𝜑)) |
| 20 | 14, 19 | mpbir 146 |
. 2
⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) |
| 21 | | eqeq1 2203 |
. . 3
⊢ (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ↔ {𝑥 ∈ {𝐴} ∣ 𝜑} = ∅)) |
| 22 | | eqeq1 2203 |
. . 3
⊢ (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = {𝐴} ↔ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴})) |
| 23 | 21, 22 | orbi12d 794 |
. 2
⊢ (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → ((𝑀 = ∅ ∨ 𝑀 = {𝐴}) ↔ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}))) |
| 24 | 20, 23 | mpbiri 168 |
1
⊢ (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ∨ 𝑀 = {𝐴})) |