Proof of Theorem rabrsndc
Step | Hyp | Ref
| Expression |
1 | | rabrsndc.1 |
. . . . . 6
⊢ 𝐴 ∈ V |
2 | | rabrsndc.2 |
. . . . . . . 8
⊢
DECID 𝜑 |
3 | | pm2.1dc 827 |
. . . . . . . 8
⊢
(DECID 𝜑 → (¬ 𝜑 ∨ 𝜑)) |
4 | 2, 3 | ax-mp 5 |
. . . . . . 7
⊢ (¬
𝜑 ∨ 𝜑) |
5 | 4 | sbcth 2964 |
. . . . . 6
⊢ (𝐴 ∈ V → [𝐴 / 𝑥](¬ 𝜑 ∨ 𝜑)) |
6 | 1, 5 | ax-mp 5 |
. . . . 5
⊢
[𝐴 / 𝑥](¬ 𝜑 ∨ 𝜑) |
7 | | sbcor 2995 |
. . . . 5
⊢
([𝐴 / 𝑥](¬ 𝜑 ∨ 𝜑) ↔ ([𝐴 / 𝑥] ¬ 𝜑 ∨ [𝐴 / 𝑥]𝜑)) |
8 | 6, 7 | mpbi 144 |
. . . 4
⊢
([𝐴 / 𝑥] ¬ 𝜑 ∨ [𝐴 / 𝑥]𝜑) |
9 | | ralsns 3614 |
. . . . . 6
⊢ (𝐴 ∈ V → (∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ [𝐴 / 𝑥] ¬ 𝜑)) |
10 | 1, 9 | ax-mp 5 |
. . . . 5
⊢
(∀𝑥 ∈
{𝐴} ¬ 𝜑 ↔ [𝐴 / 𝑥] ¬ 𝜑) |
11 | | ralsns 3614 |
. . . . . 6
⊢ (𝐴 ∈ V → (∀𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
12 | 1, 11 | ax-mp 5 |
. . . . 5
⊢
(∀𝑥 ∈
{𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑) |
13 | 10, 12 | orbi12i 754 |
. . . 4
⊢
((∀𝑥 ∈
{𝐴} ¬ 𝜑 ∨ ∀𝑥 ∈ {𝐴}𝜑) ↔ ([𝐴 / 𝑥] ¬ 𝜑 ∨ [𝐴 / 𝑥]𝜑)) |
14 | 8, 13 | mpbir 145 |
. . 3
⊢
(∀𝑥 ∈
{𝐴} ¬ 𝜑 ∨ ∀𝑥 ∈ {𝐴}𝜑) |
15 | | rabeq0 3438 |
. . . 4
⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ {𝐴} ¬ 𝜑) |
16 | | eqcom 2167 |
. . . . 5
⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} ↔ {𝐴} = {𝑥 ∈ {𝐴} ∣ 𝜑}) |
17 | | rabid2 2642 |
. . . . 5
⊢ ({𝐴} = {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ ∀𝑥 ∈ {𝐴}𝜑) |
18 | 16, 17 | bitri 183 |
. . . 4
⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} ↔ ∀𝑥 ∈ {𝐴}𝜑) |
19 | 15, 18 | orbi12i 754 |
. . 3
⊢ (({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) ↔ (∀𝑥 ∈ {𝐴} ¬ 𝜑 ∨ ∀𝑥 ∈ {𝐴}𝜑)) |
20 | 14, 19 | mpbir 145 |
. 2
⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) |
21 | | eqeq1 2172 |
. . 3
⊢ (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ↔ {𝑥 ∈ {𝐴} ∣ 𝜑} = ∅)) |
22 | | eqeq1 2172 |
. . 3
⊢ (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = {𝐴} ↔ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴})) |
23 | 21, 22 | orbi12d 783 |
. 2
⊢ (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → ((𝑀 = ∅ ∨ 𝑀 = {𝐴}) ↔ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}))) |
24 | 20, 23 | mpbiri 167 |
1
⊢ (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ∨ 𝑀 = {𝐴})) |