Proof of Theorem rabrsndc
| Step | Hyp | Ref
 | Expression | 
| 1 |   | rabrsndc.1 | 
. . . . . 6
⊢ 𝐴 ∈ V | 
| 2 |   | rabrsndc.2 | 
. . . . . . . 8
⊢
DECID 𝜑 | 
| 3 |   | pm2.1dc 838 | 
. . . . . . . 8
⊢
(DECID 𝜑 → (¬ 𝜑 ∨ 𝜑)) | 
| 4 | 2, 3 | ax-mp 5 | 
. . . . . . 7
⊢ (¬
𝜑 ∨ 𝜑) | 
| 5 | 4 | sbcth 3003 | 
. . . . . 6
⊢ (𝐴 ∈ V → [𝐴 / 𝑥](¬ 𝜑 ∨ 𝜑)) | 
| 6 | 1, 5 | ax-mp 5 | 
. . . . 5
⊢
[𝐴 / 𝑥](¬ 𝜑 ∨ 𝜑) | 
| 7 |   | sbcor 3034 | 
. . . . 5
⊢
([𝐴 / 𝑥](¬ 𝜑 ∨ 𝜑) ↔ ([𝐴 / 𝑥] ¬ 𝜑 ∨ [𝐴 / 𝑥]𝜑)) | 
| 8 | 6, 7 | mpbi 145 | 
. . . 4
⊢
([𝐴 / 𝑥] ¬ 𝜑 ∨ [𝐴 / 𝑥]𝜑) | 
| 9 |   | ralsns 3660 | 
. . . . . 6
⊢ (𝐴 ∈ V → (∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ [𝐴 / 𝑥] ¬ 𝜑)) | 
| 10 | 1, 9 | ax-mp 5 | 
. . . . 5
⊢
(∀𝑥 ∈
{𝐴} ¬ 𝜑 ↔ [𝐴 / 𝑥] ¬ 𝜑) | 
| 11 |   | ralsns 3660 | 
. . . . . 6
⊢ (𝐴 ∈ V → (∀𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑)) | 
| 12 | 1, 11 | ax-mp 5 | 
. . . . 5
⊢
(∀𝑥 ∈
{𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑) | 
| 13 | 10, 12 | orbi12i 765 | 
. . . 4
⊢
((∀𝑥 ∈
{𝐴} ¬ 𝜑 ∨ ∀𝑥 ∈ {𝐴}𝜑) ↔ ([𝐴 / 𝑥] ¬ 𝜑 ∨ [𝐴 / 𝑥]𝜑)) | 
| 14 | 8, 13 | mpbir 146 | 
. . 3
⊢
(∀𝑥 ∈
{𝐴} ¬ 𝜑 ∨ ∀𝑥 ∈ {𝐴}𝜑) | 
| 15 |   | rabeq0 3480 | 
. . . 4
⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ {𝐴} ¬ 𝜑) | 
| 16 |   | eqcom 2198 | 
. . . . 5
⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} ↔ {𝐴} = {𝑥 ∈ {𝐴} ∣ 𝜑}) | 
| 17 |   | rabid2 2674 | 
. . . . 5
⊢ ({𝐴} = {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ ∀𝑥 ∈ {𝐴}𝜑) | 
| 18 | 16, 17 | bitri 184 | 
. . . 4
⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} ↔ ∀𝑥 ∈ {𝐴}𝜑) | 
| 19 | 15, 18 | orbi12i 765 | 
. . 3
⊢ (({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) ↔ (∀𝑥 ∈ {𝐴} ¬ 𝜑 ∨ ∀𝑥 ∈ {𝐴}𝜑)) | 
| 20 | 14, 19 | mpbir 146 | 
. 2
⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) | 
| 21 |   | eqeq1 2203 | 
. . 3
⊢ (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ↔ {𝑥 ∈ {𝐴} ∣ 𝜑} = ∅)) | 
| 22 |   | eqeq1 2203 | 
. . 3
⊢ (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = {𝐴} ↔ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴})) | 
| 23 | 21, 22 | orbi12d 794 | 
. 2
⊢ (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → ((𝑀 = ∅ ∨ 𝑀 = {𝐴}) ↔ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}))) | 
| 24 | 20, 23 | mpbiri 168 | 
1
⊢ (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ∨ 𝑀 = {𝐴})) |