ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.45 GIF version

Theorem pm2.45 733
Description: Theorem *2.45 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.45 (¬ (𝜑𝜓) → ¬ 𝜑)

Proof of Theorem pm2.45
StepHypRef Expression
1 orc 707 . 2 (𝜑 → (𝜑𝜓))
21con3i 627 1 (¬ (𝜑𝜓) → ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm2.47  735  ioran  747  dn1dc  955  eueq3dc  2904
  Copyright terms: Public domain W3C validator