Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.45 | GIF version |
Description: Theorem *2.45 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.45 | ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 707 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
2 | 1 | con3i 627 | 1 ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm2.47 735 ioran 747 dn1dc 955 eueq3dc 2904 |
Copyright terms: Public domain | W3C validator |