Proof of Theorem eueq3dc
| Step | Hyp | Ref
| Expression |
| 1 | | dcor 937 |
. 2
⊢
(DECID 𝜑 → (DECID 𝜓 → DECID
(𝜑 ∨ 𝜓))) |
| 2 | | df-dc 836 |
. . 3
⊢
(DECID (𝜑 ∨ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓))) |
| 3 | | eueq3dc.1 |
. . . . . . 7
⊢ 𝐴 ∈ V |
| 4 | 3 | eueq1 2936 |
. . . . . 6
⊢
∃!𝑥 𝑥 = 𝐴 |
| 5 | | ibar 301 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 = 𝐴 ↔ (𝜑 ∧ 𝑥 = 𝐴))) |
| 6 | | pm2.45 739 |
. . . . . . . . . . . . 13
⊢ (¬
(𝜑 ∨ 𝜓) → ¬ 𝜑) |
| 7 | | eueq3dc.4 |
. . . . . . . . . . . . . . 15
⊢ ¬
(𝜑 ∧ 𝜓) |
| 8 | 7 | imnani 692 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬ 𝜓) |
| 9 | 8 | con2i 628 |
. . . . . . . . . . . . 13
⊢ (𝜓 → ¬ 𝜑) |
| 10 | 6, 9 | jaoi 717 |
. . . . . . . . . . . 12
⊢ ((¬
(𝜑 ∨ 𝜓) ∨ 𝜓) → ¬ 𝜑) |
| 11 | 10 | con2i 628 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ (¬ (𝜑 ∨ 𝜓) ∨ 𝜓)) |
| 12 | 6 | con2i 628 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ¬ ¬ (𝜑 ∨ 𝜓)) |
| 13 | 12 | bianfd 950 |
. . . . . . . . . . . 12
⊢ (𝜑 → (¬ (𝜑 ∨ 𝜓) ↔ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵))) |
| 14 | 8 | bianfd 950 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝑥 = 𝐶))) |
| 15 | 13, 14 | orbi12d 794 |
. . . . . . . . . . 11
⊢ (𝜑 → ((¬ (𝜑 ∨ 𝜓) ∨ 𝜓) ↔ ((¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
| 16 | 11, 15 | mtbid 673 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ ((¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶))) |
| 17 | | biorf 745 |
. . . . . . . . . 10
⊢ (¬
((¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) → ((𝜑 ∧ 𝑥 = 𝐴) ↔ (((¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ∨ (𝜑 ∧ 𝑥 = 𝐴)))) |
| 18 | 16, 17 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → ((𝜑 ∧ 𝑥 = 𝐴) ↔ (((¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ∨ (𝜑 ∧ 𝑥 = 𝐴)))) |
| 19 | 5, 18 | bitrd 188 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 = 𝐴 ↔ (((¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ∨ (𝜑 ∧ 𝑥 = 𝐴)))) |
| 20 | | 3orrot 986 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ↔ ((¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶) ∨ (𝜑 ∧ 𝑥 = 𝐴))) |
| 21 | | df-3or 981 |
. . . . . . . . 9
⊢ (((¬
(𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶) ∨ (𝜑 ∧ 𝑥 = 𝐴)) ↔ (((¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ∨ (𝜑 ∧ 𝑥 = 𝐴))) |
| 22 | 20, 21 | bitri 184 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ↔ (((¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ∨ (𝜑 ∧ 𝑥 = 𝐴))) |
| 23 | 19, 22 | bitr4di 198 |
. . . . . . 7
⊢ (𝜑 → (𝑥 = 𝐴 ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
| 24 | 23 | eubidv 2053 |
. . . . . 6
⊢ (𝜑 → (∃!𝑥 𝑥 = 𝐴 ↔ ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
| 25 | 4, 24 | mpbii 148 |
. . . . 5
⊢ (𝜑 → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶))) |
| 26 | | eueq3dc.3 |
. . . . . . 7
⊢ 𝐶 ∈ V |
| 27 | 26 | eueq1 2936 |
. . . . . 6
⊢
∃!𝑥 𝑥 = 𝐶 |
| 28 | | ibar 301 |
. . . . . . . . 9
⊢ (𝜓 → (𝑥 = 𝐶 ↔ (𝜓 ∧ 𝑥 = 𝐶))) |
| 29 | 8 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ¬ 𝜓) |
| 30 | | pm2.46 740 |
. . . . . . . . . . . . 13
⊢ (¬
(𝜑 ∨ 𝜓) → ¬ 𝜓) |
| 31 | 30 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((¬
(𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) → ¬ 𝜓) |
| 32 | 29, 31 | jaoi 717 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵)) → ¬ 𝜓) |
| 33 | 32 | con2i 628 |
. . . . . . . . . 10
⊢ (𝜓 → ¬ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵))) |
| 34 | | biorf 745 |
. . . . . . . . . 10
⊢ (¬
((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵)) → ((𝜓 ∧ 𝑥 = 𝐶) ↔ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵)) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
| 35 | 33, 34 | syl 14 |
. . . . . . . . 9
⊢ (𝜓 → ((𝜓 ∧ 𝑥 = 𝐶) ↔ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵)) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
| 36 | 28, 35 | bitrd 188 |
. . . . . . . 8
⊢ (𝜓 → (𝑥 = 𝐶 ↔ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵)) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
| 37 | | df-3or 981 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ↔ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵)) ∨ (𝜓 ∧ 𝑥 = 𝐶))) |
| 38 | 36, 37 | bitr4di 198 |
. . . . . . 7
⊢ (𝜓 → (𝑥 = 𝐶 ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
| 39 | 38 | eubidv 2053 |
. . . . . 6
⊢ (𝜓 → (∃!𝑥 𝑥 = 𝐶 ↔ ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
| 40 | 27, 39 | mpbii 148 |
. . . . 5
⊢ (𝜓 → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶))) |
| 41 | 25, 40 | jaoi 717 |
. . . 4
⊢ ((𝜑 ∨ 𝜓) → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶))) |
| 42 | | eueq3dc.2 |
. . . . . 6
⊢ 𝐵 ∈ V |
| 43 | 42 | eueq1 2936 |
. . . . 5
⊢
∃!𝑥 𝑥 = 𝐵 |
| 44 | | ibar 301 |
. . . . . . . 8
⊢ (¬
(𝜑 ∨ 𝜓) → (𝑥 = 𝐵 ↔ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵))) |
| 45 | | simpl 109 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜑) |
| 46 | | simpl 109 |
. . . . . . . . . . 11
⊢ ((𝜓 ∧ 𝑥 = 𝐶) → 𝜓) |
| 47 | 45, 46 | orim12i 760 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (𝜓 ∧ 𝑥 = 𝐶)) → (𝜑 ∨ 𝜓)) |
| 48 | 47 | con3i 633 |
. . . . . . . . 9
⊢ (¬
(𝜑 ∨ 𝜓) → ¬ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (𝜓 ∧ 𝑥 = 𝐶))) |
| 49 | | biorf 745 |
. . . . . . . . 9
⊢ (¬
((𝜑 ∧ 𝑥 = 𝐴) ∨ (𝜓 ∧ 𝑥 = 𝐶)) → ((¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ↔ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵)))) |
| 50 | 48, 49 | syl 14 |
. . . . . . . 8
⊢ (¬
(𝜑 ∨ 𝜓) → ((¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ↔ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵)))) |
| 51 | 44, 50 | bitrd 188 |
. . . . . . 7
⊢ (¬
(𝜑 ∨ 𝜓) → (𝑥 = 𝐵 ↔ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵)))) |
| 52 | | 3orcomb 989 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (𝜓 ∧ 𝑥 = 𝐶) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵))) |
| 53 | | df-3or 981 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (𝜓 ∧ 𝑥 = 𝐶) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵)) ↔ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵))) |
| 54 | 52, 53 | bitri 184 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ↔ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵))) |
| 55 | 51, 54 | bitr4di 198 |
. . . . . 6
⊢ (¬
(𝜑 ∨ 𝜓) → (𝑥 = 𝐵 ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
| 56 | 55 | eubidv 2053 |
. . . . 5
⊢ (¬
(𝜑 ∨ 𝜓) → (∃!𝑥 𝑥 = 𝐵 ↔ ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
| 57 | 43, 56 | mpbii 148 |
. . . 4
⊢ (¬
(𝜑 ∨ 𝜓) → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶))) |
| 58 | 41, 57 | jaoi 717 |
. . 3
⊢ (((𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓)) → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶))) |
| 59 | 2, 58 | sylbi 121 |
. 2
⊢
(DECID (𝜑 ∨ 𝜓) → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶))) |
| 60 | 1, 59 | syl6 33 |
1
⊢
(DECID 𝜑 → (DECID 𝜓 → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |