Proof of Theorem eueq3dc
Step | Hyp | Ref
| Expression |
1 | | dcor 925 |
. 2
⊢
(DECID 𝜑 → (DECID 𝜓 → DECID
(𝜑 ∨ 𝜓))) |
2 | | df-dc 825 |
. . 3
⊢
(DECID (𝜑 ∨ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓))) |
3 | | eueq3dc.1 |
. . . . . . 7
⊢ 𝐴 ∈ V |
4 | 3 | eueq1 2898 |
. . . . . 6
⊢
∃!𝑥 𝑥 = 𝐴 |
5 | | ibar 299 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 = 𝐴 ↔ (𝜑 ∧ 𝑥 = 𝐴))) |
6 | | pm2.45 728 |
. . . . . . . . . . . . 13
⊢ (¬
(𝜑 ∨ 𝜓) → ¬ 𝜑) |
7 | | eueq3dc.4 |
. . . . . . . . . . . . . . 15
⊢ ¬
(𝜑 ∧ 𝜓) |
8 | 7 | imnani 681 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬ 𝜓) |
9 | 8 | con2i 617 |
. . . . . . . . . . . . 13
⊢ (𝜓 → ¬ 𝜑) |
10 | 6, 9 | jaoi 706 |
. . . . . . . . . . . 12
⊢ ((¬
(𝜑 ∨ 𝜓) ∨ 𝜓) → ¬ 𝜑) |
11 | 10 | con2i 617 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ (¬ (𝜑 ∨ 𝜓) ∨ 𝜓)) |
12 | 6 | con2i 617 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ¬ ¬ (𝜑 ∨ 𝜓)) |
13 | 12 | bianfd 938 |
. . . . . . . . . . . 12
⊢ (𝜑 → (¬ (𝜑 ∨ 𝜓) ↔ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵))) |
14 | 8 | bianfd 938 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝑥 = 𝐶))) |
15 | 13, 14 | orbi12d 783 |
. . . . . . . . . . 11
⊢ (𝜑 → ((¬ (𝜑 ∨ 𝜓) ∨ 𝜓) ↔ ((¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
16 | 11, 15 | mtbid 662 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ ((¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶))) |
17 | | biorf 734 |
. . . . . . . . . 10
⊢ (¬
((¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) → ((𝜑 ∧ 𝑥 = 𝐴) ↔ (((¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ∨ (𝜑 ∧ 𝑥 = 𝐴)))) |
18 | 16, 17 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → ((𝜑 ∧ 𝑥 = 𝐴) ↔ (((¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ∨ (𝜑 ∧ 𝑥 = 𝐴)))) |
19 | 5, 18 | bitrd 187 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 = 𝐴 ↔ (((¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ∨ (𝜑 ∧ 𝑥 = 𝐴)))) |
20 | | 3orrot 974 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ↔ ((¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶) ∨ (𝜑 ∧ 𝑥 = 𝐴))) |
21 | | df-3or 969 |
. . . . . . . . 9
⊢ (((¬
(𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶) ∨ (𝜑 ∧ 𝑥 = 𝐴)) ↔ (((¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ∨ (𝜑 ∧ 𝑥 = 𝐴))) |
22 | 20, 21 | bitri 183 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ↔ (((¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ∨ (𝜑 ∧ 𝑥 = 𝐴))) |
23 | 19, 22 | bitr4di 197 |
. . . . . . 7
⊢ (𝜑 → (𝑥 = 𝐴 ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
24 | 23 | eubidv 2022 |
. . . . . 6
⊢ (𝜑 → (∃!𝑥 𝑥 = 𝐴 ↔ ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
25 | 4, 24 | mpbii 147 |
. . . . 5
⊢ (𝜑 → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶))) |
26 | | eueq3dc.3 |
. . . . . . 7
⊢ 𝐶 ∈ V |
27 | 26 | eueq1 2898 |
. . . . . 6
⊢
∃!𝑥 𝑥 = 𝐶 |
28 | | ibar 299 |
. . . . . . . . 9
⊢ (𝜓 → (𝑥 = 𝐶 ↔ (𝜓 ∧ 𝑥 = 𝐶))) |
29 | 8 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ¬ 𝜓) |
30 | | pm2.46 729 |
. . . . . . . . . . . . 13
⊢ (¬
(𝜑 ∨ 𝜓) → ¬ 𝜓) |
31 | 30 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((¬
(𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) → ¬ 𝜓) |
32 | 29, 31 | jaoi 706 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵)) → ¬ 𝜓) |
33 | 32 | con2i 617 |
. . . . . . . . . 10
⊢ (𝜓 → ¬ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵))) |
34 | | biorf 734 |
. . . . . . . . . 10
⊢ (¬
((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵)) → ((𝜓 ∧ 𝑥 = 𝐶) ↔ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵)) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
35 | 33, 34 | syl 14 |
. . . . . . . . 9
⊢ (𝜓 → ((𝜓 ∧ 𝑥 = 𝐶) ↔ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵)) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
36 | 28, 35 | bitrd 187 |
. . . . . . . 8
⊢ (𝜓 → (𝑥 = 𝐶 ↔ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵)) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
37 | | df-3or 969 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ↔ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵)) ∨ (𝜓 ∧ 𝑥 = 𝐶))) |
38 | 36, 37 | bitr4di 197 |
. . . . . . 7
⊢ (𝜓 → (𝑥 = 𝐶 ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
39 | 38 | eubidv 2022 |
. . . . . 6
⊢ (𝜓 → (∃!𝑥 𝑥 = 𝐶 ↔ ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
40 | 27, 39 | mpbii 147 |
. . . . 5
⊢ (𝜓 → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶))) |
41 | 25, 40 | jaoi 706 |
. . . 4
⊢ ((𝜑 ∨ 𝜓) → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶))) |
42 | | eueq3dc.2 |
. . . . . 6
⊢ 𝐵 ∈ V |
43 | 42 | eueq1 2898 |
. . . . 5
⊢
∃!𝑥 𝑥 = 𝐵 |
44 | | ibar 299 |
. . . . . . . 8
⊢ (¬
(𝜑 ∨ 𝜓) → (𝑥 = 𝐵 ↔ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵))) |
45 | | simpl 108 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜑) |
46 | | simpl 108 |
. . . . . . . . . . 11
⊢ ((𝜓 ∧ 𝑥 = 𝐶) → 𝜓) |
47 | 45, 46 | orim12i 749 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (𝜓 ∧ 𝑥 = 𝐶)) → (𝜑 ∨ 𝜓)) |
48 | 47 | con3i 622 |
. . . . . . . . 9
⊢ (¬
(𝜑 ∨ 𝜓) → ¬ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (𝜓 ∧ 𝑥 = 𝐶))) |
49 | | biorf 734 |
. . . . . . . . 9
⊢ (¬
((𝜑 ∧ 𝑥 = 𝐴) ∨ (𝜓 ∧ 𝑥 = 𝐶)) → ((¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ↔ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵)))) |
50 | 48, 49 | syl 14 |
. . . . . . . 8
⊢ (¬
(𝜑 ∨ 𝜓) → ((¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ↔ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵)))) |
51 | 44, 50 | bitrd 187 |
. . . . . . 7
⊢ (¬
(𝜑 ∨ 𝜓) → (𝑥 = 𝐵 ↔ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵)))) |
52 | | 3orcomb 977 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (𝜓 ∧ 𝑥 = 𝐶) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵))) |
53 | | df-3or 969 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (𝜓 ∧ 𝑥 = 𝐶) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵)) ↔ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵))) |
54 | 52, 53 | bitri 183 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ↔ (((𝜑 ∧ 𝑥 = 𝐴) ∨ (𝜓 ∧ 𝑥 = 𝐶)) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵))) |
55 | 51, 54 | bitr4di 197 |
. . . . . 6
⊢ (¬
(𝜑 ∨ 𝜓) → (𝑥 = 𝐵 ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
56 | 55 | eubidv 2022 |
. . . . 5
⊢ (¬
(𝜑 ∨ 𝜓) → (∃!𝑥 𝑥 = 𝐵 ↔ ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
57 | 43, 56 | mpbii 147 |
. . . 4
⊢ (¬
(𝜑 ∨ 𝜓) → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶))) |
58 | 41, 57 | jaoi 706 |
. . 3
⊢ (((𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓)) → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶))) |
59 | 2, 58 | sylbi 120 |
. 2
⊢
(DECID (𝜑 ∨ 𝜓) → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶))) |
60 | 1, 59 | syl6 33 |
1
⊢
(DECID 𝜑 → (DECID 𝜓 → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |