ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.46 GIF version

Theorem pm2.46 693
Description: Theorem *2.46 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.46 (¬ (𝜑𝜓) → ¬ 𝜓)

Proof of Theorem pm2.46
StepHypRef Expression
1 olc 667 . 2 (𝜓 → (𝜑𝜓))
21con3i 597 1 (¬ (𝜑𝜓) → ¬ 𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 664
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-in1 579  ax-in2 580  ax-io 665
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  pm2.48  695  pm2.49  696  ioran  704  eueq3dc  2789  regexmidlem1  4349
  Copyright terms: Public domain W3C validator