Proof of Theorem dn1dc
| Step | Hyp | Ref
| Expression |
| 1 | | pm2.45 739 |
. . . . 5
⊢ (¬
(𝜑 ∨ 𝜓) → ¬ 𝜑) |
| 2 | | imnan 691 |
. . . . 5
⊢ ((¬
(𝜑 ∨ 𝜓) → ¬ 𝜑) ↔ ¬ (¬ (𝜑 ∨ 𝜓) ∧ 𝜑)) |
| 3 | 1, 2 | mpbi 145 |
. . . 4
⊢ ¬
(¬ (𝜑 ∨ 𝜓) ∧ 𝜑) |
| 4 | 3 | biorfi 747 |
. . 3
⊢ (𝜒 ↔ (𝜒 ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝜑))) |
| 5 | | orcom 729 |
. . 3
⊢ ((𝜒 ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝜑)) ↔ ((¬ (𝜑 ∨ 𝜓) ∧ 𝜑) ∨ 𝜒)) |
| 6 | | ordir 818 |
. . 3
⊢ (((¬
(𝜑 ∨ 𝜓) ∧ 𝜑) ∨ 𝜒) ↔ ((¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ 𝜒))) |
| 7 | 4, 5, 6 | 3bitri 206 |
. 2
⊢ (𝜒 ↔ ((¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ 𝜒))) |
| 8 | | pm4.45 785 |
. . . . . 6
⊢ (𝜒 ↔ (𝜒 ∧ (𝜒 ∨ 𝜃))) |
| 9 | | simprrl 539 |
. . . . . . 7
⊢
((DECID 𝜑 ∧ (DECID 𝜓 ∧ (DECID 𝜒 ∧ DECID 𝜃))) → DECID 𝜒) |
| 10 | | dcor 937 |
. . . . . . . . 9
⊢
(DECID 𝜒 → (DECID 𝜃 → DECID
(𝜒 ∨ 𝜃))) |
| 11 | 10 | imp 124 |
. . . . . . . 8
⊢
((DECID 𝜒 ∧ DECID 𝜃) → DECID (𝜒 ∨ 𝜃)) |
| 12 | 11 | ad2antll 491 |
. . . . . . 7
⊢
((DECID 𝜑 ∧ (DECID 𝜓 ∧ (DECID 𝜒 ∧ DECID 𝜃))) → DECID (𝜒 ∨ 𝜃)) |
| 13 | | anordc 958 |
. . . . . . 7
⊢
(DECID 𝜒 → (DECID (𝜒 ∨ 𝜃) → ((𝜒 ∧ (𝜒 ∨ 𝜃)) ↔ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃))))) |
| 14 | 9, 12, 13 | sylc 62 |
. . . . . 6
⊢
((DECID 𝜑 ∧ (DECID 𝜓 ∧ (DECID 𝜒 ∧ DECID 𝜃))) → ((𝜒 ∧ (𝜒 ∨ 𝜃)) ↔ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))) |
| 15 | 8, 14 | bitrid 192 |
. . . . 5
⊢
((DECID 𝜑 ∧ (DECID 𝜓 ∧ (DECID 𝜒 ∧ DECID 𝜃))) → (𝜒 ↔ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))) |
| 16 | 15 | orbi2d 791 |
. . . 4
⊢
((DECID 𝜑 ∧ (DECID 𝜓 ∧ (DECID 𝜒 ∧ DECID 𝜃))) → ((𝜑 ∨ 𝜒) ↔ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃))))) |
| 17 | 16 | anbi2d 464 |
. . 3
⊢
((DECID 𝜑 ∧ (DECID 𝜓 ∧ (DECID 𝜒 ∧ DECID 𝜃))) → (((¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ 𝜒)) ↔ ((¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))))) |
| 18 | | dcor 937 |
. . . . . . . 8
⊢
(DECID 𝜑 → (DECID 𝜓 → DECID
(𝜑 ∨ 𝜓))) |
| 19 | | dcn 843 |
. . . . . . . 8
⊢
(DECID (𝜑 ∨ 𝜓) → DECID ¬ (𝜑 ∨ 𝜓)) |
| 20 | 18, 19 | syl6 33 |
. . . . . . 7
⊢
(DECID 𝜑 → (DECID 𝜓 → DECID ¬
(𝜑 ∨ 𝜓))) |
| 21 | 20 | imp 124 |
. . . . . 6
⊢
((DECID 𝜑 ∧ DECID 𝜓) → DECID ¬ (𝜑 ∨ 𝜓)) |
| 22 | 21 | adantrr 479 |
. . . . 5
⊢
((DECID 𝜑 ∧ (DECID 𝜓 ∧ (DECID 𝜒 ∧ DECID 𝜃))) → DECID ¬ (𝜑 ∨ 𝜓)) |
| 23 | | dcor 937 |
. . . . 5
⊢
(DECID ¬ (𝜑 ∨ 𝜓) → (DECID 𝜒 → DECID
(¬ (𝜑 ∨ 𝜓) ∨ 𝜒))) |
| 24 | 22, 9, 23 | sylc 62 |
. . . 4
⊢
((DECID 𝜑 ∧ (DECID 𝜓 ∧ (DECID 𝜒 ∧ DECID 𝜃))) → DECID (¬
(𝜑 ∨ 𝜓) ∨ 𝜒)) |
| 25 | | dcn 843 |
. . . . . . . 8
⊢
(DECID 𝜒 → DECID ¬ 𝜒) |
| 26 | 9, 25 | syl 14 |
. . . . . . 7
⊢
((DECID 𝜑 ∧ (DECID 𝜓 ∧ (DECID 𝜒 ∧ DECID 𝜃))) → DECID ¬ 𝜒) |
| 27 | | dcn 843 |
. . . . . . . 8
⊢
(DECID (𝜒 ∨ 𝜃) → DECID ¬ (𝜒 ∨ 𝜃)) |
| 28 | 12, 27 | syl 14 |
. . . . . . 7
⊢
((DECID 𝜑 ∧ (DECID 𝜓 ∧ (DECID 𝜒 ∧ DECID 𝜃))) → DECID ¬ (𝜒 ∨ 𝜃)) |
| 29 | | dcor 937 |
. . . . . . 7
⊢
(DECID ¬ 𝜒 → (DECID ¬ (𝜒 ∨ 𝜃) → DECID (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))) |
| 30 | 26, 28, 29 | sylc 62 |
. . . . . 6
⊢
((DECID 𝜑 ∧ (DECID 𝜓 ∧ (DECID 𝜒 ∧ DECID 𝜃))) → DECID (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃))) |
| 31 | | dcn 843 |
. . . . . 6
⊢
(DECID (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)) → DECID ¬ (¬
𝜒 ∨ ¬ (𝜒 ∨ 𝜃))) |
| 32 | 30, 31 | syl 14 |
. . . . 5
⊢
((DECID 𝜑 ∧ (DECID 𝜓 ∧ (DECID 𝜒 ∧ DECID 𝜃))) → DECID ¬ (¬
𝜒 ∨ ¬ (𝜒 ∨ 𝜃))) |
| 33 | | dcor 937 |
. . . . . 6
⊢
(DECID 𝜑 → (DECID ¬ (¬
𝜒 ∨ ¬ (𝜒 ∨ 𝜃)) → DECID (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃))))) |
| 34 | 33 | imp 124 |
. . . . 5
⊢
((DECID 𝜑 ∧ DECID ¬ (¬
𝜒 ∨ ¬ (𝜒 ∨ 𝜃))) → DECID (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))) |
| 35 | 32, 34 | syldan 282 |
. . . 4
⊢
((DECID 𝜑 ∧ (DECID 𝜓 ∧ (DECID 𝜒 ∧ DECID 𝜃))) → DECID (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))) |
| 36 | | anordc 958 |
. . . 4
⊢
(DECID (¬ (𝜑 ∨ 𝜓) ∨ 𝜒) → (DECID (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃))) → (((¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))) ↔ ¬ (¬ (¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∨ ¬ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃))))))) |
| 37 | 24, 35, 36 | sylc 62 |
. . 3
⊢
((DECID 𝜑 ∧ (DECID 𝜓 ∧ (DECID 𝜒 ∧ DECID 𝜃))) → (((¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))) ↔ ¬ (¬ (¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∨ ¬ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))))) |
| 38 | 17, 37 | bitrd 188 |
. 2
⊢
((DECID 𝜑 ∧ (DECID 𝜓 ∧ (DECID 𝜒 ∧ DECID 𝜃))) → (((¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∧ (𝜑 ∨ 𝜒)) ↔ ¬ (¬ (¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∨ ¬ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))))) |
| 39 | 7, 38 | bitr2id 193 |
1
⊢
((DECID 𝜑 ∧ (DECID 𝜓 ∧ (DECID 𝜒 ∧ DECID 𝜃))) → (¬ (¬ (¬ (𝜑 ∨ 𝜓) ∨ 𝜒) ∨ ¬ (𝜑 ∨ ¬ (¬ 𝜒 ∨ ¬ (𝜒 ∨ 𝜃)))) ↔ 𝜒)) |