Proof of Theorem regexmidlem1
| Step | Hyp | Ref
| Expression |
| 1 | | eqeq1 2203 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 = {∅} ↔ 𝑦 = {∅})) |
| 2 | | eqeq1 2203 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) |
| 3 | 2 | anbi1d 465 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑥 = ∅ ∧ 𝜑) ↔ (𝑦 = ∅ ∧ 𝜑))) |
| 4 | 1, 3 | orbi12d 794 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑)) ↔ (𝑦 = {∅} ∨ (𝑦 = ∅ ∧ 𝜑)))) |
| 5 | | regexmidlemm.a |
. . . . . 6
⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} |
| 6 | 4, 5 | elrab2 2923 |
. . . . 5
⊢ (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ {∅, {∅}} ∧ (𝑦 = {∅} ∨ (𝑦 = ∅ ∧ 𝜑)))) |
| 7 | 6 | simprbi 275 |
. . . 4
⊢ (𝑦 ∈ 𝐴 → (𝑦 = {∅} ∨ (𝑦 = ∅ ∧ 𝜑))) |
| 8 | | 0ex 4160 |
. . . . . . . . 9
⊢ ∅
∈ V |
| 9 | 8 | snid 3653 |
. . . . . . . 8
⊢ ∅
∈ {∅} |
| 10 | | eleq2 2260 |
. . . . . . . 8
⊢ (𝑦 = {∅} → (∅
∈ 𝑦 ↔ ∅
∈ {∅})) |
| 11 | 9, 10 | mpbiri 168 |
. . . . . . 7
⊢ (𝑦 = {∅} → ∅
∈ 𝑦) |
| 12 | | eleq1 2259 |
. . . . . . . . 9
⊢ (𝑧 = ∅ → (𝑧 ∈ 𝑦 ↔ ∅ ∈ 𝑦)) |
| 13 | | eleq1 2259 |
. . . . . . . . . 10
⊢ (𝑧 = ∅ → (𝑧 ∈ 𝐴 ↔ ∅ ∈ 𝐴)) |
| 14 | 13 | notbid 668 |
. . . . . . . . 9
⊢ (𝑧 = ∅ → (¬ 𝑧 ∈ 𝐴 ↔ ¬ ∅ ∈ 𝐴)) |
| 15 | 12, 14 | imbi12d 234 |
. . . . . . . 8
⊢ (𝑧 = ∅ → ((𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴) ↔ (∅ ∈ 𝑦 → ¬ ∅ ∈ 𝐴))) |
| 16 | 8, 15 | spcv 2858 |
. . . . . . 7
⊢
(∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴) → (∅ ∈ 𝑦 → ¬ ∅ ∈ 𝐴)) |
| 17 | 11, 16 | syl5com 29 |
. . . . . 6
⊢ (𝑦 = {∅} →
(∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴) → ¬ ∅ ∈ 𝐴)) |
| 18 | 8 | prid1 3728 |
. . . . . . . . . 10
⊢ ∅
∈ {∅, {∅}} |
| 19 | | eqeq1 2203 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → (𝑥 = {∅} ↔ ∅ =
{∅})) |
| 20 | | eqeq1 2203 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ =
∅)) |
| 21 | 20 | anbi1d 465 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → ((𝑥 = ∅ ∧ 𝜑) ↔ (∅ = ∅ ∧ 𝜑))) |
| 22 | 19, 21 | orbi12d 794 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → ((𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑)) ↔ (∅ = {∅} ∨ (∅
= ∅ ∧ 𝜑)))) |
| 23 | 22, 5 | elrab2 2923 |
. . . . . . . . . 10
⊢ (∅
∈ 𝐴 ↔ (∅
∈ {∅, {∅}} ∧ (∅ = {∅} ∨ (∅ = ∅
∧ 𝜑)))) |
| 24 | 18, 23 | mpbiran 942 |
. . . . . . . . 9
⊢ (∅
∈ 𝐴 ↔ (∅ =
{∅} ∨ (∅ = ∅ ∧ 𝜑))) |
| 25 | | pm2.46 740 |
. . . . . . . . 9
⊢ (¬
(∅ = {∅} ∨ (∅ = ∅ ∧ 𝜑)) → ¬ (∅ = ∅ ∧
𝜑)) |
| 26 | 24, 25 | sylnbi 679 |
. . . . . . . 8
⊢ (¬
∅ ∈ 𝐴 →
¬ (∅ = ∅ ∧ 𝜑)) |
| 27 | | eqid 2196 |
. . . . . . . . 9
⊢ ∅ =
∅ |
| 28 | 27 | biantrur 303 |
. . . . . . . 8
⊢ (𝜑 ↔ (∅ = ∅ ∧
𝜑)) |
| 29 | 26, 28 | sylnibr 678 |
. . . . . . 7
⊢ (¬
∅ ∈ 𝐴 →
¬ 𝜑) |
| 30 | 29 | olcd 735 |
. . . . . 6
⊢ (¬
∅ ∈ 𝐴 →
(𝜑 ∨ ¬ 𝜑)) |
| 31 | 17, 30 | syl6 33 |
. . . . 5
⊢ (𝑦 = {∅} →
(∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴) → (𝜑 ∨ ¬ 𝜑))) |
| 32 | | orc 713 |
. . . . . . 7
⊢ (𝜑 → (𝜑 ∨ ¬ 𝜑)) |
| 33 | 32 | adantl 277 |
. . . . . 6
⊢ ((𝑦 = ∅ ∧ 𝜑) → (𝜑 ∨ ¬ 𝜑)) |
| 34 | 33 | a1d 22 |
. . . . 5
⊢ ((𝑦 = ∅ ∧ 𝜑) → (∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴) → (𝜑 ∨ ¬ 𝜑))) |
| 35 | 31, 34 | jaoi 717 |
. . . 4
⊢ ((𝑦 = {∅} ∨ (𝑦 = ∅ ∧ 𝜑)) → (∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴) → (𝜑 ∨ ¬ 𝜑))) |
| 36 | 7, 35 | syl 14 |
. . 3
⊢ (𝑦 ∈ 𝐴 → (∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴) → (𝜑 ∨ ¬ 𝜑))) |
| 37 | 36 | imp 124 |
. 2
⊢ ((𝑦 ∈ 𝐴 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴)) → (𝜑 ∨ ¬ 𝜑)) |
| 38 | 37 | exlimiv 1612 |
1
⊢
(∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴)) → (𝜑 ∨ ¬ 𝜑)) |