Proof of Theorem regexmidlem1
| Step | Hyp | Ref
 | Expression | 
| 1 |   | eqeq1 2203 | 
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 = {∅} ↔ 𝑦 = {∅})) | 
| 2 |   | eqeq1 2203 | 
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) | 
| 3 | 2 | anbi1d 465 | 
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑥 = ∅ ∧ 𝜑) ↔ (𝑦 = ∅ ∧ 𝜑))) | 
| 4 | 1, 3 | orbi12d 794 | 
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑)) ↔ (𝑦 = {∅} ∨ (𝑦 = ∅ ∧ 𝜑)))) | 
| 5 |   | regexmidlemm.a | 
. . . . . 6
⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} | 
| 6 | 4, 5 | elrab2 2923 | 
. . . . 5
⊢ (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ {∅, {∅}} ∧ (𝑦 = {∅} ∨ (𝑦 = ∅ ∧ 𝜑)))) | 
| 7 | 6 | simprbi 275 | 
. . . 4
⊢ (𝑦 ∈ 𝐴 → (𝑦 = {∅} ∨ (𝑦 = ∅ ∧ 𝜑))) | 
| 8 |   | 0ex 4160 | 
. . . . . . . . 9
⊢ ∅
∈ V | 
| 9 | 8 | snid 3653 | 
. . . . . . . 8
⊢ ∅
∈ {∅} | 
| 10 |   | eleq2 2260 | 
. . . . . . . 8
⊢ (𝑦 = {∅} → (∅
∈ 𝑦 ↔ ∅
∈ {∅})) | 
| 11 | 9, 10 | mpbiri 168 | 
. . . . . . 7
⊢ (𝑦 = {∅} → ∅
∈ 𝑦) | 
| 12 |   | eleq1 2259 | 
. . . . . . . . 9
⊢ (𝑧 = ∅ → (𝑧 ∈ 𝑦 ↔ ∅ ∈ 𝑦)) | 
| 13 |   | eleq1 2259 | 
. . . . . . . . . 10
⊢ (𝑧 = ∅ → (𝑧 ∈ 𝐴 ↔ ∅ ∈ 𝐴)) | 
| 14 | 13 | notbid 668 | 
. . . . . . . . 9
⊢ (𝑧 = ∅ → (¬ 𝑧 ∈ 𝐴 ↔ ¬ ∅ ∈ 𝐴)) | 
| 15 | 12, 14 | imbi12d 234 | 
. . . . . . . 8
⊢ (𝑧 = ∅ → ((𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴) ↔ (∅ ∈ 𝑦 → ¬ ∅ ∈ 𝐴))) | 
| 16 | 8, 15 | spcv 2858 | 
. . . . . . 7
⊢
(∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴) → (∅ ∈ 𝑦 → ¬ ∅ ∈ 𝐴)) | 
| 17 | 11, 16 | syl5com 29 | 
. . . . . 6
⊢ (𝑦 = {∅} →
(∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴) → ¬ ∅ ∈ 𝐴)) | 
| 18 | 8 | prid1 3728 | 
. . . . . . . . . 10
⊢ ∅
∈ {∅, {∅}} | 
| 19 |   | eqeq1 2203 | 
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → (𝑥 = {∅} ↔ ∅ =
{∅})) | 
| 20 |   | eqeq1 2203 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ =
∅)) | 
| 21 | 20 | anbi1d 465 | 
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → ((𝑥 = ∅ ∧ 𝜑) ↔ (∅ = ∅ ∧ 𝜑))) | 
| 22 | 19, 21 | orbi12d 794 | 
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → ((𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑)) ↔ (∅ = {∅} ∨ (∅
= ∅ ∧ 𝜑)))) | 
| 23 | 22, 5 | elrab2 2923 | 
. . . . . . . . . 10
⊢ (∅
∈ 𝐴 ↔ (∅
∈ {∅, {∅}} ∧ (∅ = {∅} ∨ (∅ = ∅
∧ 𝜑)))) | 
| 24 | 18, 23 | mpbiran 942 | 
. . . . . . . . 9
⊢ (∅
∈ 𝐴 ↔ (∅ =
{∅} ∨ (∅ = ∅ ∧ 𝜑))) | 
| 25 |   | pm2.46 740 | 
. . . . . . . . 9
⊢ (¬
(∅ = {∅} ∨ (∅ = ∅ ∧ 𝜑)) → ¬ (∅ = ∅ ∧
𝜑)) | 
| 26 | 24, 25 | sylnbi 679 | 
. . . . . . . 8
⊢ (¬
∅ ∈ 𝐴 →
¬ (∅ = ∅ ∧ 𝜑)) | 
| 27 |   | eqid 2196 | 
. . . . . . . . 9
⊢ ∅ =
∅ | 
| 28 | 27 | biantrur 303 | 
. . . . . . . 8
⊢ (𝜑 ↔ (∅ = ∅ ∧
𝜑)) | 
| 29 | 26, 28 | sylnibr 678 | 
. . . . . . 7
⊢ (¬
∅ ∈ 𝐴 →
¬ 𝜑) | 
| 30 | 29 | olcd 735 | 
. . . . . 6
⊢ (¬
∅ ∈ 𝐴 →
(𝜑 ∨ ¬ 𝜑)) | 
| 31 | 17, 30 | syl6 33 | 
. . . . 5
⊢ (𝑦 = {∅} →
(∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴) → (𝜑 ∨ ¬ 𝜑))) | 
| 32 |   | orc 713 | 
. . . . . . 7
⊢ (𝜑 → (𝜑 ∨ ¬ 𝜑)) | 
| 33 | 32 | adantl 277 | 
. . . . . 6
⊢ ((𝑦 = ∅ ∧ 𝜑) → (𝜑 ∨ ¬ 𝜑)) | 
| 34 | 33 | a1d 22 | 
. . . . 5
⊢ ((𝑦 = ∅ ∧ 𝜑) → (∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴) → (𝜑 ∨ ¬ 𝜑))) | 
| 35 | 31, 34 | jaoi 717 | 
. . . 4
⊢ ((𝑦 = {∅} ∨ (𝑦 = ∅ ∧ 𝜑)) → (∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴) → (𝜑 ∨ ¬ 𝜑))) | 
| 36 | 7, 35 | syl 14 | 
. . 3
⊢ (𝑦 ∈ 𝐴 → (∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴) → (𝜑 ∨ ¬ 𝜑))) | 
| 37 | 36 | imp 124 | 
. 2
⊢ ((𝑦 ∈ 𝐴 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴)) → (𝜑 ∨ ¬ 𝜑)) | 
| 38 | 37 | exlimiv 1612 | 
1
⊢
(∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴)) → (𝜑 ∨ ¬ 𝜑)) |