Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl5com | GIF version |
Description: Syllogism inference with commuted antecedents. (Contributed by NM, 24-May-2005.) |
Ref | Expression |
---|---|
syl5com.1 | ⊢ (𝜑 → 𝜓) |
syl5com.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
Ref | Expression |
---|---|
syl5com | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5com.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
3 | syl5com.2 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
4 | 2, 3 | sylcom 28 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com12 30 syl5 32 pm2.6dc 852 pm5.11dc 899 ax16i 1846 mor 2056 ceqsalg 2754 cgsexg 2761 cgsex2g 2762 cgsex4g 2763 spc2egv 2816 spc2gv 2817 spc3egv 2818 spc3gv 2819 disjne 3462 uneqdifeqim 3494 eqifdc 3554 triun 4093 sucssel 4402 ordsucg 4479 regexmidlem1 4510 relresfld 5133 relcoi1 5135 fornex 6083 f1dmex 6084 dom2d 6739 findcard 6854 nneo 9294 zeo2 9297 uznfz 10038 difelfzle 10069 ssfzo12 10159 facndiv 10652 fisumcom2 11379 fprodssdc 11531 fprodcom2fi 11567 ndvdssub 11867 bezoutlembi 11938 eucalglt 11989 prmind2 12052 coprm 12076 prmdiveq 12168 inopn 12651 basis1 12695 tgss 12713 tgcl 12714 xmeteq0 13009 blssexps 13079 blssex 13080 mopni3 13134 neibl 13141 metss 13144 metcnp3 13161 logbgcd1irr 13535 bj-indsuc 13820 bj-nntrans 13843 |
Copyright terms: Public domain | W3C validator |