| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5com | GIF version | ||
| Description: Syllogism inference with commuted antecedents. (Contributed by NM, 24-May-2005.) |
| Ref | Expression |
|---|---|
| syl5com.1 | ⊢ (𝜑 → 𝜓) |
| syl5com.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
| Ref | Expression |
|---|---|
| syl5com | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl5com.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 3 | syl5com.2 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
| 4 | 2, 3 | sylcom 28 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com12 30 syl5 32 pm2.6dc 867 pm5.11dc 914 ax16i 1904 mor 2120 ceqsalg 2828 cgsexg 2835 cgsex2g 2836 cgsex4g 2837 spc2egv 2893 spc2gv 2894 spc3egv 2895 spc3gv 2896 disjne 3545 uneqdifeqim 3577 eqifdc 3639 triun 4195 sucssel 4515 ordsucg 4594 regexmidlem1 4625 relresfld 5258 relcoi1 5260 focdmex 6266 f1dmex 6267 dom2d 6932 findcard 7058 nneo 9558 zeo2 9561 uznfz 10307 difelfzle 10338 ssfzo12 10438 facndiv 10969 swrdswrd 11245 pfxccatin12lem2 11271 pfxccatin12 11273 pfxccat3 11274 fisumcom2 11957 fprodssdc 12109 fprodcom2fi 12145 ndvdssub 12449 bezoutlembi 12534 eucalglt 12587 prmind2 12650 coprm 12674 prmdiveq 12766 mhmlin 13508 issubg2m 13734 nsgbi 13749 issubrng2 14182 issubrg2 14213 lmodlema 14264 rmodislmodlem 14322 rmodislmod 14323 lspsnel6 14380 inopn 14685 basis1 14729 tgss 14745 tgcl 14746 xmeteq0 15041 blssexps 15111 blssex 15112 mopni3 15166 neibl 15173 metss 15176 metcnp3 15193 logbgcd1irr 15649 gausslemma2dlem0i 15744 2lgsoddprmlem3 15798 bj-indsuc 16315 bj-nntrans 16338 |
| Copyright terms: Public domain | W3C validator |