| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5com | GIF version | ||
| Description: Syllogism inference with commuted antecedents. (Contributed by NM, 24-May-2005.) |
| Ref | Expression |
|---|---|
| syl5com.1 | ⊢ (𝜑 → 𝜓) |
| syl5com.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
| Ref | Expression |
|---|---|
| syl5com | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl5com.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 3 | syl5com.2 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
| 4 | 2, 3 | sylcom 28 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com12 30 syl5 32 pm2.6dc 863 pm5.11dc 910 ax16i 1872 mor 2087 ceqsalg 2791 cgsexg 2798 cgsex2g 2799 cgsex4g 2800 spc2egv 2854 spc2gv 2855 spc3egv 2856 spc3gv 2857 disjne 3504 uneqdifeqim 3536 eqifdc 3596 triun 4144 sucssel 4459 ordsucg 4538 regexmidlem1 4569 relresfld 5199 relcoi1 5201 focdmex 6172 f1dmex 6173 dom2d 6832 findcard 6949 nneo 9429 zeo2 9432 uznfz 10178 difelfzle 10209 ssfzo12 10300 facndiv 10831 fisumcom2 11603 fprodssdc 11755 fprodcom2fi 11791 ndvdssub 12095 bezoutlembi 12172 eucalglt 12225 prmind2 12288 coprm 12312 prmdiveq 12404 mhmlin 13099 issubg2m 13319 nsgbi 13334 issubrng2 13766 issubrg2 13797 lmodlema 13848 rmodislmodlem 13906 rmodislmod 13907 lspsnel6 13964 inopn 14239 basis1 14283 tgss 14299 tgcl 14300 xmeteq0 14595 blssexps 14665 blssex 14666 mopni3 14720 neibl 14727 metss 14730 metcnp3 14747 logbgcd1irr 15203 gausslemma2dlem0i 15298 2lgsoddprmlem3 15352 bj-indsuc 15574 bj-nntrans 15597 |
| Copyright terms: Public domain | W3C validator |