| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5com | GIF version | ||
| Description: Syllogism inference with commuted antecedents. (Contributed by NM, 24-May-2005.) |
| Ref | Expression |
|---|---|
| syl5com.1 | ⊢ (𝜑 → 𝜓) |
| syl5com.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
| Ref | Expression |
|---|---|
| syl5com | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl5com.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 3 | syl5com.2 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
| 4 | 2, 3 | sylcom 28 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com12 30 syl5 32 pm2.6dc 863 pm5.11dc 910 ax16i 1872 mor 2087 ceqsalg 2791 cgsexg 2798 cgsex2g 2799 cgsex4g 2800 spc2egv 2854 spc2gv 2855 spc3egv 2856 spc3gv 2857 disjne 3505 uneqdifeqim 3537 eqifdc 3597 triun 4145 sucssel 4460 ordsucg 4539 regexmidlem1 4570 relresfld 5200 relcoi1 5202 focdmex 6181 f1dmex 6182 dom2d 6841 findcard 6958 nneo 9448 zeo2 9451 uznfz 10197 difelfzle 10228 ssfzo12 10319 facndiv 10850 fisumcom2 11622 fprodssdc 11774 fprodcom2fi 11810 ndvdssub 12114 bezoutlembi 12199 eucalglt 12252 prmind2 12315 coprm 12339 prmdiveq 12431 mhmlin 13171 issubg2m 13397 nsgbi 13412 issubrng2 13844 issubrg2 13875 lmodlema 13926 rmodislmodlem 13984 rmodislmod 13985 lspsnel6 14042 inopn 14347 basis1 14391 tgss 14407 tgcl 14408 xmeteq0 14703 blssexps 14773 blssex 14774 mopni3 14828 neibl 14835 metss 14838 metcnp3 14855 logbgcd1irr 15311 gausslemma2dlem0i 15406 2lgsoddprmlem3 15460 bj-indsuc 15682 bj-nntrans 15705 |
| Copyright terms: Public domain | W3C validator |