| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5com | GIF version | ||
| Description: Syllogism inference with commuted antecedents. (Contributed by NM, 24-May-2005.) |
| Ref | Expression |
|---|---|
| syl5com.1 | ⊢ (𝜑 → 𝜓) |
| syl5com.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
| Ref | Expression |
|---|---|
| syl5com | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl5com.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 3 | syl5com.2 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
| 4 | 2, 3 | sylcom 28 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com12 30 syl5 32 pm2.6dc 863 pm5.11dc 910 ax16i 1872 mor 2087 ceqsalg 2791 cgsexg 2798 cgsex2g 2799 cgsex4g 2800 spc2egv 2854 spc2gv 2855 spc3egv 2856 spc3gv 2857 disjne 3505 uneqdifeqim 3537 eqifdc 3597 triun 4145 sucssel 4460 ordsucg 4539 regexmidlem1 4570 relresfld 5200 relcoi1 5202 focdmex 6174 f1dmex 6175 dom2d 6834 findcard 6951 nneo 9432 zeo2 9435 uznfz 10181 difelfzle 10212 ssfzo12 10303 facndiv 10834 fisumcom2 11606 fprodssdc 11758 fprodcom2fi 11794 ndvdssub 12098 bezoutlembi 12183 eucalglt 12236 prmind2 12299 coprm 12323 prmdiveq 12415 mhmlin 13125 issubg2m 13345 nsgbi 13360 issubrng2 13792 issubrg2 13823 lmodlema 13874 rmodislmodlem 13932 rmodislmod 13933 lspsnel6 13990 inopn 14265 basis1 14309 tgss 14325 tgcl 14326 xmeteq0 14621 blssexps 14691 blssex 14692 mopni3 14746 neibl 14753 metss 14756 metcnp3 14773 logbgcd1irr 15229 gausslemma2dlem0i 15324 2lgsoddprmlem3 15378 bj-indsuc 15600 bj-nntrans 15623 |
| Copyright terms: Public domain | W3C validator |