| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5com | GIF version | ||
| Description: Syllogism inference with commuted antecedents. (Contributed by NM, 24-May-2005.) |
| Ref | Expression |
|---|---|
| syl5com.1 | ⊢ (𝜑 → 𝜓) |
| syl5com.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
| Ref | Expression |
|---|---|
| syl5com | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl5com.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 3 | syl5com.2 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
| 4 | 2, 3 | sylcom 28 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com12 30 syl5 32 pm2.6dc 864 pm5.11dc 911 ax16i 1882 mor 2097 ceqsalg 2802 cgsexg 2809 cgsex2g 2810 cgsex4g 2811 spc2egv 2865 spc2gv 2866 spc3egv 2867 spc3gv 2868 disjne 3516 uneqdifeqim 3548 eqifdc 3609 triun 4160 sucssel 4476 ordsucg 4555 regexmidlem1 4586 relresfld 5218 relcoi1 5220 focdmex 6210 f1dmex 6211 dom2d 6874 findcard 6997 nneo 9489 zeo2 9492 uznfz 10238 difelfzle 10269 ssfzo12 10366 facndiv 10897 swrdswrd 11170 fisumcom2 11799 fprodssdc 11951 fprodcom2fi 11987 ndvdssub 12291 bezoutlembi 12376 eucalglt 12429 prmind2 12492 coprm 12516 prmdiveq 12608 mhmlin 13349 issubg2m 13575 nsgbi 13590 issubrng2 14022 issubrg2 14053 lmodlema 14104 rmodislmodlem 14162 rmodislmod 14163 lspsnel6 14220 inopn 14525 basis1 14569 tgss 14585 tgcl 14586 xmeteq0 14881 blssexps 14951 blssex 14952 mopni3 15006 neibl 15013 metss 15016 metcnp3 15033 logbgcd1irr 15489 gausslemma2dlem0i 15584 2lgsoddprmlem3 15638 bj-indsuc 15978 bj-nntrans 16001 |
| Copyright terms: Public domain | W3C validator |