![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5com | GIF version |
Description: Syllogism inference with commuted antecedents. (Contributed by NM, 24-May-2005.) |
Ref | Expression |
---|---|
syl5com.1 | ⊢ (𝜑 → 𝜓) |
syl5com.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
Ref | Expression |
---|---|
syl5com | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5com.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
3 | syl5com.2 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
4 | 2, 3 | sylcom 28 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com12 30 syl5 32 pm2.6dc 862 pm5.11dc 909 ax16i 1858 mor 2068 ceqsalg 2766 cgsexg 2773 cgsex2g 2774 cgsex4g 2775 spc2egv 2828 spc2gv 2829 spc3egv 2830 spc3gv 2831 disjne 3477 uneqdifeqim 3509 eqifdc 3570 triun 4115 sucssel 4425 ordsucg 4502 regexmidlem1 4533 relresfld 5159 relcoi1 5161 focdmex 6116 f1dmex 6117 dom2d 6773 findcard 6888 nneo 9356 zeo2 9359 uznfz 10103 difelfzle 10134 ssfzo12 10224 facndiv 10719 fisumcom2 11446 fprodssdc 11598 fprodcom2fi 11634 ndvdssub 11935 bezoutlembi 12006 eucalglt 12057 prmind2 12120 coprm 12144 prmdiveq 12236 mhmlin 12858 issubg2m 13049 nsgbi 13064 issubrg2 13362 lmodlema 13382 rmodislmodlem 13440 rmodislmod 13441 inopn 13506 basis1 13550 tgss 13566 tgcl 13567 xmeteq0 13862 blssexps 13932 blssex 13933 mopni3 13987 neibl 13994 metss 13997 metcnp3 14014 logbgcd1irr 14388 2lgsoddprmlem3 14462 bj-indsuc 14683 bj-nntrans 14706 |
Copyright terms: Public domain | W3C validator |