![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5com | GIF version |
Description: Syllogism inference with commuted antecedents. (Contributed by NM, 24-May-2005.) |
Ref | Expression |
---|---|
syl5com.1 | ⊢ (𝜑 → 𝜓) |
syl5com.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
Ref | Expression |
---|---|
syl5com | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5com.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
3 | syl5com.2 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
4 | 2, 3 | sylcom 28 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com12 30 syl5 32 pm2.6dc 863 pm5.11dc 910 ax16i 1869 mor 2084 ceqsalg 2788 cgsexg 2795 cgsex2g 2796 cgsex4g 2797 spc2egv 2851 spc2gv 2852 spc3egv 2853 spc3gv 2854 disjne 3501 uneqdifeqim 3533 eqifdc 3593 triun 4141 sucssel 4456 ordsucg 4535 regexmidlem1 4566 relresfld 5196 relcoi1 5198 focdmex 6169 f1dmex 6170 dom2d 6829 findcard 6946 nneo 9423 zeo2 9426 uznfz 10172 difelfzle 10203 ssfzo12 10294 facndiv 10813 fisumcom2 11584 fprodssdc 11736 fprodcom2fi 11772 ndvdssub 12074 bezoutlembi 12145 eucalglt 12198 prmind2 12261 coprm 12285 prmdiveq 12377 mhmlin 13042 issubg2m 13262 nsgbi 13277 issubrng2 13709 issubrg2 13740 lmodlema 13791 rmodislmodlem 13849 rmodislmod 13850 lspsnel6 13907 inopn 14182 basis1 14226 tgss 14242 tgcl 14243 xmeteq0 14538 blssexps 14608 blssex 14609 mopni3 14663 neibl 14670 metss 14673 metcnp3 14690 logbgcd1irr 15140 gausslemma2dlem0i 15214 2lgsoddprmlem3 15268 bj-indsuc 15490 bj-nntrans 15513 |
Copyright terms: Public domain | W3C validator |