| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5com | GIF version | ||
| Description: Syllogism inference with commuted antecedents. (Contributed by NM, 24-May-2005.) |
| Ref | Expression |
|---|---|
| syl5com.1 | ⊢ (𝜑 → 𝜓) |
| syl5com.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
| Ref | Expression |
|---|---|
| syl5com | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl5com.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 3 | syl5com.2 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
| 4 | 2, 3 | sylcom 28 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com12 30 syl5 32 pm2.6dc 867 pm5.11dc 914 ax16i 1904 mor 2120 ceqsalg 2828 cgsexg 2835 cgsex2g 2836 cgsex4g 2837 spc2egv 2893 spc2gv 2894 spc3egv 2895 spc3gv 2896 disjne 3545 uneqdifeqim 3577 eqifdc 3639 triun 4194 sucssel 4512 ordsucg 4591 regexmidlem1 4622 relresfld 5254 relcoi1 5256 focdmex 6250 f1dmex 6251 dom2d 6914 findcard 7038 nneo 9538 zeo2 9541 uznfz 10287 difelfzle 10318 ssfzo12 10417 facndiv 10948 swrdswrd 11223 pfxccatin12lem2 11249 pfxccatin12 11251 pfxccat3 11252 fisumcom2 11935 fprodssdc 12087 fprodcom2fi 12123 ndvdssub 12427 bezoutlembi 12512 eucalglt 12565 prmind2 12628 coprm 12652 prmdiveq 12744 mhmlin 13486 issubg2m 13712 nsgbi 13727 issubrng2 14159 issubrg2 14190 lmodlema 14241 rmodislmodlem 14299 rmodislmod 14300 lspsnel6 14357 inopn 14662 basis1 14706 tgss 14722 tgcl 14723 xmeteq0 15018 blssexps 15088 blssex 15089 mopni3 15143 neibl 15150 metss 15153 metcnp3 15170 logbgcd1irr 15626 gausslemma2dlem0i 15721 2lgsoddprmlem3 15775 bj-indsuc 16221 bj-nntrans 16244 |
| Copyright terms: Public domain | W3C validator |