![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5com | GIF version |
Description: Syllogism inference with commuted antecedents. (Contributed by NM, 24-May-2005.) |
Ref | Expression |
---|---|
syl5com.1 | ⊢ (𝜑 → 𝜓) |
syl5com.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
Ref | Expression |
---|---|
syl5com | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5com.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
3 | syl5com.2 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
4 | 2, 3 | sylcom 28 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com12 30 syl5 32 pm2.6dc 863 pm5.11dc 910 ax16i 1868 mor 2078 ceqsalg 2777 cgsexg 2784 cgsex2g 2785 cgsex4g 2786 spc2egv 2839 spc2gv 2840 spc3egv 2841 spc3gv 2842 disjne 3488 uneqdifeqim 3520 eqifdc 3581 triun 4126 sucssel 4436 ordsucg 4513 regexmidlem1 4544 relresfld 5170 relcoi1 5172 focdmex 6129 f1dmex 6130 dom2d 6786 findcard 6901 nneo 9369 zeo2 9372 uznfz 10116 difelfzle 10147 ssfzo12 10237 facndiv 10732 fisumcom2 11459 fprodssdc 11611 fprodcom2fi 11647 ndvdssub 11948 bezoutlembi 12019 eucalglt 12070 prmind2 12133 coprm 12157 prmdiveq 12249 mhmlin 12879 issubg2m 13080 nsgbi 13095 issubrng2 13425 issubrg2 13456 lmodlema 13476 rmodislmodlem 13534 rmodislmod 13535 lspsnel6 13592 inopn 13774 basis1 13818 tgss 13834 tgcl 13835 xmeteq0 14130 blssexps 14200 blssex 14201 mopni3 14255 neibl 14262 metss 14265 metcnp3 14282 logbgcd1irr 14656 2lgsoddprmlem3 14730 bj-indsuc 14951 bj-nntrans 14974 |
Copyright terms: Public domain | W3C validator |