ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.71r GIF version

Theorem pm4.71r 388
Description: Implication in terms of biconditional and conjunction. Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 25-Jul-1999.)
Assertion
Ref Expression
pm4.71r ((𝜑𝜓) ↔ (𝜑 ↔ (𝜓𝜑)))

Proof of Theorem pm4.71r
StepHypRef Expression
1 pm4.71 387 . 2 ((𝜑𝜓) ↔ (𝜑 ↔ (𝜑𝜓)))
2 ancom 264 . . 3 ((𝜑𝜓) ↔ (𝜓𝜑))
32bibi2i 226 . 2 ((𝜑 ↔ (𝜑𝜓)) ↔ (𝜑 ↔ (𝜓𝜑)))
41, 3bitri 183 1 ((𝜑𝜓) ↔ (𝜑 ↔ (𝜓𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm4.71ri  390  pm4.71rd  392
  Copyright terms: Public domain W3C validator