ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.71r Unicode version

Theorem pm4.71r 388
Description: Implication in terms of biconditional and conjunction. Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 25-Jul-1999.)
Assertion
Ref Expression
pm4.71r  |-  ( (
ph  ->  ps )  <->  ( ph  <->  ( ps  /\  ph )
) )

Proof of Theorem pm4.71r
StepHypRef Expression
1 pm4.71 387 . 2  |-  ( (
ph  ->  ps )  <->  ( ph  <->  (
ph  /\  ps )
) )
2 ancom 264 . . 3  |-  ( (
ph  /\  ps )  <->  ( ps  /\  ph )
)
32bibi2i 226 . 2  |-  ( (
ph 
<->  ( ph  /\  ps ) )  <->  ( ph  <->  ( ps  /\  ph )
) )
41, 3bitri 183 1  |-  ( (
ph  ->  ps )  <->  ( ph  <->  ( ps  /\  ph )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm4.71ri  390  pm4.71rd  392
  Copyright terms: Public domain W3C validator