![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bibi2i | GIF version |
Description: Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.) |
Ref | Expression |
---|---|
bibi.a | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
bibi2i | ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜑)) | |
2 | bibi.a | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | bitrdi 196 | . 2 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜓)) |
4 | id 19 | . . 3 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜓)) | |
5 | 4, 2 | bitr4di 198 | . 2 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜑)) |
6 | 3, 5 | impbii 126 | 1 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bibi1i 228 bibi12i 229 bibi2d 232 pm4.71r 390 sblbis 1972 sbrbif 1974 abeq2 2298 abid2f 2358 necon4biddc 2435 pm13.183 2890 disj3 3490 euabsn2 3676 a9evsep 4140 inex1 4152 zfpair2 4225 sucel 4425 bdinex1 15048 bj-zfpair2 15059 bj-d0clsepcl 15074 |
Copyright terms: Public domain | W3C validator |