| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bibi2i | GIF version | ||
| Description: Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.) |
| Ref | Expression |
|---|---|
| bibi.a | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bibi2i | ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜑)) | |
| 2 | bibi.a | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | bitrdi 196 | . 2 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜓)) |
| 4 | id 19 | . . 3 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜓)) | |
| 5 | 4, 2 | bitr4di 198 | . 2 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜑)) |
| 6 | 3, 5 | impbii 126 | 1 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi1i 228 bibi12i 229 bibi2d 232 pm4.71r 390 sblbis 2011 sbrbif 2013 abeq2 2338 abid2f 2398 necon4biddc 2475 pm13.183 2941 disj3 3544 euabsn2 3735 a9evsep 4205 inex1 4217 zfpair2 4293 sucel 4498 bdinex1 16192 bj-zfpair2 16203 bj-d0clsepcl 16218 |
| Copyright terms: Public domain | W3C validator |