ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bibi2i GIF version

Theorem bibi2i 226
Description: Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.)
Hypothesis
Ref Expression
bibi.a (𝜑𝜓)
Assertion
Ref Expression
bibi2i ((𝜒𝜑) ↔ (𝜒𝜓))

Proof of Theorem bibi2i
StepHypRef Expression
1 id 19 . . 3 ((𝜒𝜑) → (𝜒𝜑))
2 bibi.a . . 3 (𝜑𝜓)
31, 2bitrdi 195 . 2 ((𝜒𝜑) → (𝜒𝜓))
4 id 19 . . 3 ((𝜒𝜓) → (𝜒𝜓))
54, 2bitr4di 197 . 2 ((𝜒𝜓) → (𝜒𝜑))
63, 5impbii 125 1 ((𝜒𝜑) ↔ (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  bibi1i  227  bibi12i  228  bibi2d  231  pm4.71r  388  sblbis  1947  sbrbif  1949  abeq2  2273  abid2f  2332  necon4biddc  2409  pm13.183  2860  disj3  3457  euabsn2  3640  a9evsep  4099  inex1  4111  zfpair2  4183  sucel  4383  bdinex1  13643  bj-zfpair2  13654  bj-d0clsepcl  13669
  Copyright terms: Public domain W3C validator