| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.71rd | GIF version | ||
| Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 10-Feb-2005.) |
| Ref | Expression |
|---|---|
| pm4.71rd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| pm4.71rd | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71rd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | pm4.71r 390 | . 2 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 ↔ (𝜒 ∧ 𝜓))) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ralss 3258 rexss 3259 reuhypd 4517 elxp4 5169 elxp5 5170 dfco2a 5182 feu 5457 funbrfv2b 5622 dffn5im 5623 eqfnfv2 5677 dff4im 5725 fmptco 5745 dff13 5836 f1od2 6320 mpoxopovel 6326 brtposg 6339 dftpos3 6347 erinxp 6695 qliftfun 6703 pw2f1odclem 6930 genpdflem 7619 ltexprlemm 7712 prime 9471 oddnn02np1 12162 oddge22np1 12163 evennn02n 12164 evennn2n 12165 ismgmid 13180 eqger 13531 eqgid 13533 znleval 14386 bastop2 14527 restopn2 14626 restdis 14627 tx1cn 14712 tx2cn 14713 imasnopn 14742 xmeter 14879 lgsquadlem1 15525 lgsquadlem2 15526 lgsquadlem3 15527 |
| Copyright terms: Public domain | W3C validator |