| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.71rd | GIF version | ||
| Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 10-Feb-2005.) |
| Ref | Expression |
|---|---|
| pm4.71rd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| pm4.71rd | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71rd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | pm4.71r 390 | . 2 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 ↔ (𝜒 ∧ 𝜓))) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ralss 3267 rexss 3268 reuhypd 4536 elxp4 5189 elxp5 5190 dfco2a 5202 feu 5480 funbrfv2b 5646 dffn5im 5647 eqfnfv2 5701 dff4im 5749 fmptco 5769 dff13 5860 f1od2 6344 mpoxopovel 6350 brtposg 6363 dftpos3 6371 erinxp 6719 qliftfun 6727 pw2f1odclem 6956 genpdflem 7655 ltexprlemm 7748 prime 9507 oddnn02np1 12306 oddge22np1 12307 evennn02n 12308 evennn2n 12309 ismgmid 13324 eqger 13675 eqgid 13677 znleval 14530 bastop2 14671 restopn2 14770 restdis 14771 tx1cn 14856 tx2cn 14857 imasnopn 14886 xmeter 15023 lgsquadlem1 15669 lgsquadlem2 15670 lgsquadlem3 15671 |
| Copyright terms: Public domain | W3C validator |