![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm4.71rd | GIF version |
Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 10-Feb-2005.) |
Ref | Expression |
---|---|
pm4.71rd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
pm4.71rd | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71rd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | pm4.71r 390 | . 2 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 ↔ (𝜒 ∧ 𝜓))) | |
3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ralss 3246 rexss 3247 reuhypd 4503 elxp4 5154 elxp5 5155 dfco2a 5167 feu 5437 funbrfv2b 5602 dffn5im 5603 eqfnfv2 5657 dff4im 5705 fmptco 5725 dff13 5812 f1od2 6290 mpoxopovel 6296 brtposg 6309 dftpos3 6317 erinxp 6665 qliftfun 6673 pw2f1odclem 6892 genpdflem 7569 ltexprlemm 7662 prime 9419 oddnn02np1 12024 oddge22np1 12025 evennn02n 12026 evennn2n 12027 ismgmid 12963 eqger 13297 eqgid 13299 znleval 14152 bastop2 14263 restopn2 14362 restdis 14363 tx1cn 14448 tx2cn 14449 imasnopn 14478 xmeter 14615 lgsquadlem1 15234 lgsquadlem2 15235 lgsquadlem3 15236 |
Copyright terms: Public domain | W3C validator |