Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm4.71rd | GIF version |
Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 10-Feb-2005.) |
Ref | Expression |
---|---|
pm4.71rd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
pm4.71rd | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71rd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | pm4.71r 388 | . 2 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 ↔ (𝜒 ∧ 𝜓))) | |
3 | 1, 2 | sylib 121 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ralss 3213 rexss 3214 reuhypd 4456 elxp4 5098 elxp5 5099 dfco2a 5111 feu 5380 funbrfv2b 5541 dffn5im 5542 eqfnfv2 5594 dff4im 5642 fmptco 5662 dff13 5747 f1od2 6214 mpoxopovel 6220 brtposg 6233 dftpos3 6241 erinxp 6587 qliftfun 6595 genpdflem 7469 ltexprlemm 7562 prime 9311 oddnn02np1 11839 oddge22np1 11840 evennn02n 11841 evennn2n 11842 ismgmid 12631 bastop2 12878 restopn2 12977 restdis 12978 tx1cn 13063 tx2cn 13064 imasnopn 13093 xmeter 13230 |
Copyright terms: Public domain | W3C validator |