| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.71rd | GIF version | ||
| Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 10-Feb-2005.) |
| Ref | Expression |
|---|---|
| pm4.71rd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| pm4.71rd | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71rd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | pm4.71r 390 | . 2 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 ↔ (𝜒 ∧ 𝜓))) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ralss 3290 rexss 3291 reuhypd 4561 elxp4 5215 elxp5 5216 dfco2a 5228 feu 5507 funbrfv2b 5677 dffn5im 5678 eqfnfv2 5732 dff4im 5780 fmptco 5800 dff13 5891 f1od2 6379 mpoxopovel 6385 brtposg 6398 dftpos3 6406 erinxp 6754 qliftfun 6762 pw2f1odclem 6991 genpdflem 7690 ltexprlemm 7783 prime 9542 oddnn02np1 12386 oddge22np1 12387 evennn02n 12388 evennn2n 12389 ismgmid 13405 eqger 13756 eqgid 13758 znleval 14611 bastop2 14752 restopn2 14851 restdis 14852 tx1cn 14937 tx2cn 14938 imasnopn 14967 xmeter 15104 lgsquadlem1 15750 lgsquadlem2 15751 lgsquadlem3 15752 |
| Copyright terms: Public domain | W3C validator |