| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.71rd | GIF version | ||
| Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 10-Feb-2005.) |
| Ref | Expression |
|---|---|
| pm4.71rd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| pm4.71rd | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71rd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | pm4.71r 390 | . 2 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 ↔ (𝜒 ∧ 𝜓))) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ralss 3259 rexss 3260 reuhypd 4518 elxp4 5170 elxp5 5171 dfco2a 5183 feu 5458 funbrfv2b 5623 dffn5im 5624 eqfnfv2 5678 dff4im 5726 fmptco 5746 dff13 5837 f1od2 6321 mpoxopovel 6327 brtposg 6340 dftpos3 6348 erinxp 6696 qliftfun 6704 pw2f1odclem 6931 genpdflem 7620 ltexprlemm 7713 prime 9472 oddnn02np1 12191 oddge22np1 12192 evennn02n 12193 evennn2n 12194 ismgmid 13209 eqger 13560 eqgid 13562 znleval 14415 bastop2 14556 restopn2 14655 restdis 14656 tx1cn 14741 tx2cn 14742 imasnopn 14771 xmeter 14908 lgsquadlem1 15554 lgsquadlem2 15555 lgsquadlem3 15556 |
| Copyright terms: Public domain | W3C validator |