Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm4.71rd | GIF version |
Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 10-Feb-2005.) |
Ref | Expression |
---|---|
pm4.71rd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
pm4.71rd | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71rd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | pm4.71r 388 | . 2 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 ↔ (𝜒 ∧ 𝜓))) | |
3 | 1, 2 | sylib 121 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ralss 3208 rexss 3209 reuhypd 4449 elxp4 5091 elxp5 5092 dfco2a 5104 feu 5370 funbrfv2b 5531 dffn5im 5532 eqfnfv2 5584 dff4im 5631 fmptco 5651 dff13 5736 f1od2 6203 mpoxopovel 6209 brtposg 6222 dftpos3 6230 erinxp 6575 qliftfun 6583 genpdflem 7448 ltexprlemm 7541 prime 9290 oddnn02np1 11817 oddge22np1 11818 evennn02n 11819 evennn2n 11820 ismgmid 12608 bastop2 12724 restopn2 12823 restdis 12824 tx1cn 12909 tx2cn 12910 imasnopn 12939 xmeter 13076 |
Copyright terms: Public domain | W3C validator |