![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm4.71rd | GIF version |
Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 10-Feb-2005.) |
Ref | Expression |
---|---|
pm4.71rd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
pm4.71rd | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71rd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | pm4.71r 382 | . 2 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 ↔ (𝜒 ∧ 𝜓))) | |
3 | 1, 2 | sylib 120 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: ralss 3087 rexss 3088 reuhypd 4293 elxp4 4918 elxp5 4919 dfco2a 4931 feu 5193 funbrfv2b 5349 dffn5im 5350 eqfnfv2 5398 dff4im 5445 fmptco 5464 dff13 5547 f1od2 6000 mpt2xopovel 6006 brtposg 6019 dftpos3 6027 erinxp 6366 qliftfun 6374 genpdflem 7066 ltexprlemm 7159 prime 8845 oddnn02np1 11158 oddge22np1 11159 evennn02n 11160 evennn2n 11161 |
Copyright terms: Public domain | W3C validator |