| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.71rd | GIF version | ||
| Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 10-Feb-2005.) |
| Ref | Expression |
|---|---|
| pm4.71rd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| pm4.71rd | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71rd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | pm4.71r 390 | . 2 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 ↔ (𝜒 ∧ 𝜓))) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ralss 3250 rexss 3251 reuhypd 4507 elxp4 5158 elxp5 5159 dfco2a 5171 feu 5443 funbrfv2b 5608 dffn5im 5609 eqfnfv2 5663 dff4im 5711 fmptco 5731 dff13 5818 f1od2 6302 mpoxopovel 6308 brtposg 6321 dftpos3 6329 erinxp 6677 qliftfun 6685 pw2f1odclem 6904 genpdflem 7591 ltexprlemm 7684 prime 9442 oddnn02np1 12062 oddge22np1 12063 evennn02n 12064 evennn2n 12065 ismgmid 13079 eqger 13430 eqgid 13432 znleval 14285 bastop2 14404 restopn2 14503 restdis 14504 tx1cn 14589 tx2cn 14590 imasnopn 14619 xmeter 14756 lgsquadlem1 15402 lgsquadlem2 15403 lgsquadlem3 15404 |
| Copyright terms: Public domain | W3C validator |