Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.15dc | GIF version |
Description: A decidable proposition is equivalent to a decidable proposition or its negation. Based on theorem *5.15 of [WhiteheadRussell] p. 124. (Contributed by Jim Kingdon, 18-Apr-2018.) |
Ref | Expression |
---|---|
pm5.15dc | ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ↔ 𝜓) ∨ (𝜑 ↔ ¬ 𝜓)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xor3dc 1377 | . . . . 5 ⊢ (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)))) | |
2 | 1 | imp 123 | . . . 4 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓))) |
3 | 2 | biimpd 143 | . . 3 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → (¬ (𝜑 ↔ 𝜓) → (𝜑 ↔ ¬ 𝜓))) |
4 | dcbi 926 | . . . . 5 ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 ↔ 𝜓))) | |
5 | 4 | imp 123 | . . . 4 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → DECID (𝜑 ↔ 𝜓)) |
6 | dfordc 882 | . . . 4 ⊢ (DECID (𝜑 ↔ 𝜓) → (((𝜑 ↔ 𝜓) ∨ (𝜑 ↔ ¬ 𝜓)) ↔ (¬ (𝜑 ↔ 𝜓) → (𝜑 ↔ ¬ 𝜓)))) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → (((𝜑 ↔ 𝜓) ∨ (𝜑 ↔ ¬ 𝜓)) ↔ (¬ (𝜑 ↔ 𝜓) → (𝜑 ↔ ¬ 𝜓)))) |
8 | 3, 7 | mpbird 166 | . 2 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ↔ 𝜓) ∨ (𝜑 ↔ ¬ 𝜓))) |
9 | 8 | ex 114 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ↔ 𝜓) ∨ (𝜑 ↔ ¬ 𝜓)))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |