ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfordc GIF version

Theorem dfordc 835
Description: Definition of 'or' in terms of negation and implication for a decidable proposition. Based on definition of [Margaris] p. 49. One direction, pm2.53 682, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 26-Mar-2018.)
Assertion
Ref Expression
dfordc (DECID 𝜑 → ((𝜑𝜓) ↔ (¬ 𝜑𝜓)))

Proof of Theorem dfordc
StepHypRef Expression
1 pm2.53 682 . 2 ((𝜑𝜓) → (¬ 𝜑𝜓))
2 pm2.54dc 834 . 2 (DECID 𝜑 → ((¬ 𝜑𝜓) → (𝜑𝜓)))
31, 2impbid2 142 1 (DECID 𝜑 → ((𝜑𝜓) ↔ (¬ 𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wo 670  DECID wdc 786
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671
This theorem depends on definitions:  df-bi 116  df-dc 787
This theorem is referenced by:  imordc  840  pm4.64dc  845  pm5.17dc  854  pm5.6dc  879  pm3.12dc  910  pm5.15dc  1335  19.32dc  1625  r19.32vdc  2538  prime  9002  isprm4  11593  prm2orodd  11600  euclemma  11617  phiprmpw  11690
  Copyright terms: Public domain W3C validator