ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xor2dc GIF version

Theorem xor2dc 1322
Description: Two ways to express "exclusive or" between decidable propositions. (Contributed by Jim Kingdon, 17-Apr-2018.)
Assertion
Ref Expression
xor2dc (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))))

Proof of Theorem xor2dc
StepHypRef Expression
1 xor3dc 1319 . . . 4 (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑𝜓) ↔ (𝜑 ↔ ¬ 𝜓))))
21imp 122 . . 3 ((DECID 𝜑DECID 𝜓) → (¬ (𝜑𝜓) ↔ (𝜑 ↔ ¬ 𝜓)))
3 pm5.17dc 844 . . . 4 (DECID 𝜓 → (((𝜑𝜓) ∧ ¬ (𝜑𝜓)) ↔ (𝜑 ↔ ¬ 𝜓)))
43adantl 271 . . 3 ((DECID 𝜑DECID 𝜓) → (((𝜑𝜓) ∧ ¬ (𝜑𝜓)) ↔ (𝜑 ↔ ¬ 𝜓)))
52, 4bitr4d 189 . 2 ((DECID 𝜑DECID 𝜓) → (¬ (𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓))))
65ex 113 1 (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662  DECID wdc 776
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663
This theorem depends on definitions:  df-bi 115  df-dc 777
This theorem is referenced by:  xornbidc  1323
  Copyright terms: Public domain W3C validator