ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orcomd GIF version

Theorem orcomd 733
Description: Commutation of disjuncts in consequent. (Contributed by NM, 2-Dec-2010.)
Hypothesis
Ref Expression
orcomd.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
orcomd (𝜑 → (𝜒𝜓))

Proof of Theorem orcomd
StepHypRef Expression
1 orcomd.1 . 2 (𝜑 → (𝜓𝜒))
2 orcom 732 . 2 ((𝜓𝜒) ↔ (𝜒𝜓))
31, 2sylib 122 1 (𝜑 → (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  olcd  738  stdcndcOLD  850  pm5.54dc  922  r19.30dc  2658  exmid1dc  4263  swopo  4374  sotritrieq  4393  ontriexmidim  4591  ontri2orexmidim  4641  reg3exmidlemwe  4648  acexmidlemcase  5969  2oconcl  6555  nntri3or  6609  nntri2  6610  nntri1  6612  nnsseleq  6617  diffisn  7023  fival  7105  djulclb  7190  exmidomniim  7276  exmidomni  7277  omniwomnimkv  7302  nninfwlpoimlemginf  7311  exmidontriimlem1  7371  3nsssucpw1  7389  addnqprlemfu  7715  mulnqprlemfu  7731  addcanprlemu  7770  cauappcvgprlemladdru  7811  apreap  8702  mulap0r  8730  mul0eqap  8785  nnm1nn0  9378  elnn0z  9427  zleloe  9461  nneoor  9517  nneo  9518  zeo2  9521  uzm1  9721  nn01to3  9780  uzsplit  10256  fzospliti  10342  fzouzsplit  10345  qavgle  10445  xrmaxiflemlub  11725  fz1f1o  11852  fprodsplitdc  12073  fprodcl2lem  12082  ef0lem  12137  zeo3  12345  bezoutlemmain  12485  nninfctlemfo  12527  prmdc  12618  unennn  12934  exmidunben  12963  fnpr2ob  13339  ivthdichlem  15290  plycoeid3  15396  lgsval  15648  lgsfvalg  15649  lgsdilem  15671  nninfalllem1  16285  nninfall  16286  nninfsellemqall  16292  nninfnfiinf  16300  exmidsbthrlem  16301  sbthomlem  16304  trilpolemeq1  16319
  Copyright terms: Public domain W3C validator