ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  baib GIF version

Theorem baib 924
Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.)
Hypothesis
Ref Expression
baib.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
baib (𝜓 → (𝜑𝜒))

Proof of Theorem baib
StepHypRef Expression
1 baib.1 . 2 (𝜑 ↔ (𝜓𝜒))
2 ibar 301 . 2 (𝜓 → (𝜒 ↔ (𝜓𝜒)))
31, 2bitr4id 199 1 (𝜓 → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  baibr  925  rbaib  926  ceqsrexbv  2934  elrab3  2960  rabsn  3733  elrint2  3964  frind  4443  fnres  5440  f1ompt  5788  fliftfun  5926  ovid  6127  brdifun  6715  xpcomco  6993  isacnm  7393  ltexprlemdisj  7801  xrlenlt  8219  reapval  8731  znnnlt1  9502  difrp  9896  elfz  10218  fzolb2  10359  elfzo3  10368  fzouzsplit  10385  bitsval2  12463  rpexp  12683  isghm3  13789  isabl2  13839  dfrhm2  14126  bastop1  14765  cnntr  14907  lmres  14930  tx1cn  14951  tx2cn  14952  xmetec  15119  lgsabs1  15726
  Copyright terms: Public domain W3C validator