| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > baib | GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) | 
| Ref | Expression | 
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | 
| Ref | Expression | 
|---|---|
| baib | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | baib.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | ibar 301 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | bitr4id 199 | 1 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: baibr 921 rbaib 922 ceqsrexbv 2895 elrab3 2921 rabsn 3689 elrint2 3915 frind 4387 fnres 5374 f1ompt 5713 fliftfun 5843 ovid 6039 brdifun 6619 xpcomco 6885 ltexprlemdisj 7673 xrlenlt 8091 reapval 8603 znnnlt1 9374 difrp 9767 elfz 10089 fzolb2 10230 elfzo3 10239 fzouzsplit 10255 bitsval2 12109 rpexp 12321 isghm3 13374 isabl2 13424 dfrhm2 13710 bastop1 14319 cnntr 14461 lmres 14484 tx1cn 14505 tx2cn 14506 xmetec 14673 lgsabs1 15280 | 
| Copyright terms: Public domain | W3C validator |