| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > baib | GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| baib | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | ibar 301 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | bitr4id 199 | 1 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: baibr 925 rbaib 926 ceqsrexbv 2934 elrab3 2960 rabsn 3733 elrint2 3964 frind 4443 fnres 5440 f1ompt 5788 fliftfun 5926 ovid 6127 brdifun 6715 xpcomco 6993 isacnm 7393 ltexprlemdisj 7801 xrlenlt 8219 reapval 8731 znnnlt1 9502 difrp 9896 elfz 10218 fzolb2 10359 elfzo3 10368 fzouzsplit 10385 bitsval2 12463 rpexp 12683 isghm3 13789 isabl2 13839 dfrhm2 14126 bastop1 14765 cnntr 14907 lmres 14930 tx1cn 14951 tx2cn 14952 xmetec 15119 lgsabs1 15726 |
| Copyright terms: Public domain | W3C validator |