Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > baib | GIF version |
Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
baib | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | ibar 299 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | bitr4id 198 | 1 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: baibr 915 rbaib 916 ceqsrexbv 2861 elrab3 2887 rabsn 3650 elrint2 3872 frind 4337 fnres 5314 f1ompt 5647 fliftfun 5775 ovid 5969 brdifun 6540 xpcomco 6804 ltexprlemdisj 7568 xrlenlt 7984 reapval 8495 znnnlt1 9260 difrp 9649 elfz 9971 fzolb2 10110 elfzo3 10119 fzouzsplit 10135 rpexp 12107 bastop1 12877 cnntr 13019 lmres 13042 tx1cn 13063 tx2cn 13064 xmetec 13231 lgsabs1 13734 |
Copyright terms: Public domain | W3C validator |