![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > baib | GIF version |
Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
baib | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | ibar 301 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | bitr4id 199 | 1 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: baibr 921 rbaib 922 ceqsrexbv 2891 elrab3 2917 rabsn 3685 elrint2 3911 frind 4383 fnres 5370 f1ompt 5709 fliftfun 5839 ovid 6035 brdifun 6614 xpcomco 6880 ltexprlemdisj 7666 xrlenlt 8084 reapval 8595 znnnlt1 9365 difrp 9758 elfz 10080 fzolb2 10221 elfzo3 10230 fzouzsplit 10246 rpexp 12291 isghm3 13314 isabl2 13364 dfrhm2 13650 bastop1 14251 cnntr 14393 lmres 14416 tx1cn 14437 tx2cn 14438 xmetec 14605 lgsabs1 15155 |
Copyright terms: Public domain | W3C validator |