| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > baib | GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| baib | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | ibar 301 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | bitr4id 199 | 1 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: baibr 924 rbaib 925 ceqsrexbv 2914 elrab3 2940 rabsn 3713 elrint2 3943 frind 4420 fnres 5416 f1ompt 5759 fliftfun 5893 ovid 6092 brdifun 6677 xpcomco 6953 isacnm 7353 ltexprlemdisj 7761 xrlenlt 8179 reapval 8691 znnnlt1 9462 difrp 9856 elfz 10178 fzolb2 10319 elfzo3 10328 fzouzsplit 10345 bitsval2 12421 rpexp 12641 isghm3 13747 isabl2 13797 dfrhm2 14083 bastop1 14722 cnntr 14864 lmres 14887 tx1cn 14908 tx2cn 14909 xmetec 15076 lgsabs1 15683 |
| Copyright terms: Public domain | W3C validator |