Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > baib | GIF version |
Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
baib | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | ibar 299 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | bitr4id 198 | 1 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: baibr 915 rbaib 916 ceqsrexbv 2861 elrab3 2887 rabsn 3648 elrint2 3870 frind 4335 fnres 5312 f1ompt 5644 fliftfun 5772 ovid 5966 brdifun 6536 xpcomco 6800 ltexprlemdisj 7555 xrlenlt 7971 reapval 8482 znnnlt1 9247 difrp 9636 elfz 9958 fzolb2 10097 elfzo3 10106 fzouzsplit 10122 rpexp 12094 bastop1 12836 cnntr 12978 lmres 13001 tx1cn 13022 tx2cn 13023 xmetec 13190 lgsabs1 13693 |
Copyright terms: Public domain | W3C validator |