| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > baib | GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| baib | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | ibar 301 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | bitr4id 199 | 1 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: baibr 921 rbaib 922 ceqsrexbv 2895 elrab3 2921 rabsn 3690 elrint2 3916 frind 4388 fnres 5377 f1ompt 5716 fliftfun 5846 ovid 6043 brdifun 6628 xpcomco 6894 isacnm 7288 ltexprlemdisj 7692 xrlenlt 8110 reapval 8622 znnnlt1 9393 difrp 9786 elfz 10108 fzolb2 10249 elfzo3 10258 fzouzsplit 10274 bitsval2 12128 rpexp 12348 isghm3 13452 isabl2 13502 dfrhm2 13788 bastop1 14405 cnntr 14547 lmres 14570 tx1cn 14591 tx2cn 14592 xmetec 14759 lgsabs1 15366 |
| Copyright terms: Public domain | W3C validator |