Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > baib | GIF version |
Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
baib | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | ibar 299 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | bitr4id 198 | 1 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: baibr 910 rbaib 911 ceqsrexbv 2857 elrab3 2883 rabsn 3643 elrint2 3865 frind 4330 fnres 5304 f1ompt 5636 fliftfun 5764 ovid 5958 brdifun 6528 xpcomco 6792 ltexprlemdisj 7547 xrlenlt 7963 reapval 8474 znnnlt1 9239 difrp 9628 elfz 9950 fzolb2 10089 elfzo3 10098 fzouzsplit 10114 rpexp 12085 bastop1 12723 cnntr 12865 lmres 12888 tx1cn 12909 tx2cn 12910 xmetec 13077 lgsabs1 13580 |
Copyright terms: Public domain | W3C validator |