ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  baib GIF version

Theorem baib 909
Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.)
Hypothesis
Ref Expression
baib.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
baib (𝜓 → (𝜑𝜒))

Proof of Theorem baib
StepHypRef Expression
1 baib.1 . 2 (𝜑 ↔ (𝜓𝜒))
2 ibar 299 . 2 (𝜓 → (𝜒 ↔ (𝜓𝜒)))
31, 2bitr4id 198 1 (𝜓 → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  baibr  910  rbaib  911  ceqsrexbv  2857  elrab3  2883  rabsn  3643  elrint2  3865  frind  4330  fnres  5304  f1ompt  5636  fliftfun  5764  ovid  5958  brdifun  6528  xpcomco  6792  ltexprlemdisj  7547  xrlenlt  7963  reapval  8474  znnnlt1  9239  difrp  9628  elfz  9950  fzolb2  10089  elfzo3  10098  fzouzsplit  10114  rpexp  12085  bastop1  12723  cnntr  12865  lmres  12888  tx1cn  12909  tx2cn  12910  xmetec  13077  lgsabs1  13580
  Copyright terms: Public domain W3C validator