ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  baib GIF version

Theorem baib 923
Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.)
Hypothesis
Ref Expression
baib.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
baib (𝜓 → (𝜑𝜒))

Proof of Theorem baib
StepHypRef Expression
1 baib.1 . 2 (𝜑 ↔ (𝜓𝜒))
2 ibar 301 . 2 (𝜓 → (𝜒 ↔ (𝜓𝜒)))
31, 2bitr4id 199 1 (𝜓 → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  baibr  924  rbaib  925  ceqsrexbv  2914  elrab3  2940  rabsn  3713  elrint2  3943  frind  4420  fnres  5416  f1ompt  5759  fliftfun  5893  ovid  6092  brdifun  6677  xpcomco  6953  isacnm  7353  ltexprlemdisj  7761  xrlenlt  8179  reapval  8691  znnnlt1  9462  difrp  9856  elfz  10178  fzolb2  10319  elfzo3  10328  fzouzsplit  10345  bitsval2  12421  rpexp  12641  isghm3  13747  isabl2  13797  dfrhm2  14083  bastop1  14722  cnntr  14864  lmres  14887  tx1cn  14908  tx2cn  14909  xmetec  15076  lgsabs1  15683
  Copyright terms: Public domain W3C validator