ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.62dc GIF version

Theorem pm5.62dc 935
Description: Theorem *5.62 of [WhiteheadRussell] p. 125, for a decidable proposition. (Contributed by Jim Kingdon, 12-May-2018.)
Assertion
Ref Expression
pm5.62dc (DECID 𝜓 → (((𝜑𝜓) ∨ ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓)))

Proof of Theorem pm5.62dc
StepHypRef Expression
1 df-dc 825 . 2 (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓))
2 ordir 807 . . . 4 (((𝜑𝜓) ∨ ¬ 𝜓) ↔ ((𝜑 ∨ ¬ 𝜓) ∧ (𝜓 ∨ ¬ 𝜓)))
32simplbi 272 . . 3 (((𝜑𝜓) ∨ ¬ 𝜓) → (𝜑 ∨ ¬ 𝜓))
42simplbi2 383 . . . 4 ((𝜑 ∨ ¬ 𝜓) → ((𝜓 ∨ ¬ 𝜓) → ((𝜑𝜓) ∨ ¬ 𝜓)))
54com12 30 . . 3 ((𝜓 ∨ ¬ 𝜓) → ((𝜑 ∨ ¬ 𝜓) → ((𝜑𝜓) ∨ ¬ 𝜓)))
63, 5impbid2 142 . 2 ((𝜓 ∨ ¬ 𝜓) → (((𝜑𝜓) ∨ ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓)))
71, 6sylbi 120 1 (DECID 𝜓 → (((𝜑𝜓) ∨ ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator