| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir2and | GIF version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpbir2and.1 | ⊢ (𝜑 → 𝜒) |
| mpbir2and.2 | ⊢ (𝜑 → 𝜃) |
| mpbir2and.3 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| mpbir2and | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir2and.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | mpbir2and.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
| 4 | mpbir2and.3 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 5 | 3, 4 | mpbird 167 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: nnnninfeq2 7204 nqnq0pi 7524 genpassg 7612 addnqpr 7647 mulnqpr 7663 distrprg 7674 1idpr 7678 ltexpri 7699 recexprlemex 7723 aptipr 7727 cauappcvgprlemladd 7744 ltntri 8173 add20 8520 inelr 8630 recgt0 8896 prodgt0 8898 squeeze0 8950 suprzclex 9443 eluzadd 9649 eluzsub 9650 xrletrid 9899 xrre 9914 xrre3 9916 xleadd1a 9967 elioc2 10030 elico2 10031 elicc2 10032 elfz1eq 10129 fztri3or 10133 fznatpl1 10170 nn0fz0 10213 fzctr 10227 fzo1fzo0n0 10278 fzoaddel 10287 zsupcllemstep 10338 zssinfcl 10341 exbtwnz 10359 flid 10393 flqaddz 10406 flqdiv 10432 modqid 10460 frec2uzf1od 10517 iseqf1olemqk 10618 bcval5 10874 abs2difabs 11292 fzomaxdiflem 11296 icodiamlt 11364 dfabsmax 11401 rexico 11405 mul0inf 11425 xrbdtri 11460 sumeq2 11543 sumsnf 11593 fsum00 11646 prodeq2 11741 prodsnf 11776 bitsfzolem 12138 bitsfzo 12139 bitsmod 12140 bitscmp 12142 gcd0id 12173 gcdneg 12176 nn0seqcvgd 12236 lcmval 12258 lcmneg 12269 qredeq 12291 prmind2 12315 pw2dvdseu 12363 hashdvds 12416 pcpremul 12489 pcidlem 12519 pcgcd1 12524 fldivp1 12544 pcfaclem 12545 4sqlem17 12603 ennnfonelemex 12658 ennnfonelemnn0 12666 mnd1 13159 grp1 13310 0subg 13407 nmznsg 13421 ghmpreima 13474 ghmeql 13475 ghmnsgpreima 13477 kerf1ghm 13482 ring1 13693 dvdsrmuld 13730 1unit 13741 unitmulcl 13747 unitgrp 13750 unitnegcl 13764 rhmdvdsr 13809 elrhmunit 13811 subrngintm 13846 subrguss 13870 subrgunit 13873 rhmeql 13884 rhmima 13885 lsslsp 14063 rnglidlrng 14132 fczpsrbag 14303 tgcl 14386 distop 14407 epttop 14412 neiss 14472 opnneissb 14477 ssnei2 14479 innei 14485 lmconst 14538 cnpnei 14541 cnptopco 14544 cnss1 14548 cnss2 14549 cncnpi 14550 cncnp 14552 cnconst2 14555 cnrest 14557 cnptopresti 14560 cnpdis 14564 lmtopcnp 14572 neitx 14590 tx1cn 14591 tx2cn 14592 txcnp 14593 txcnmpt 14595 txdis1cn 14600 psmetsym 14651 psmetres2 14655 isxmetd 14669 xmetsym 14690 xmetpsmet 14691 metrtri 14699 xblss2ps 14726 xblss2 14727 xblcntrps 14735 xblcntr 14736 bdxmet 14823 bdmet 14824 bdmopn 14826 xmetxp 14829 xmetxpbl 14830 rescncf 14903 cncfco 14913 mulcncflem 14929 mulcncf 14930 suplociccreex 14946 ivthinclemlopn 14958 ivthinclemuopn 14960 hovera 14969 hoverlt1 14971 cnplimcim 14989 cnplimclemr 14991 limccnpcntop 14997 limccnp2cntop 14999 limccoap 15000 dvidlemap 15013 dvidrelem 15014 dvidsslem 15015 dvcn 15022 dvaddxxbr 15023 dvmulxxbr 15024 dvcoapbr 15029 dvcjbr 15030 dvrecap 15035 rpabscxpbnd 15262 dvdsppwf1o 15311 lgsdirprm 15361 lgseisenlem1 15397 lgseisenlem2 15398 lgseisenlem3 15399 lgsquadlem1 15404 2sqlem8 15450 refeq 15763 apdifflemf 15781 ltlenmkv 15805 |
| Copyright terms: Public domain | W3C validator |