Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpbir2and | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
mpbir2and.1 | ⊢ (𝜑 → 𝜒) |
mpbir2and.2 | ⊢ (𝜑 → 𝜃) |
mpbir2and.3 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
mpbir2and | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir2and.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | mpbir2and.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
3 | 1, 2 | jca 304 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
4 | mpbir2and.3 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
5 | 3, 4 | mpbird 166 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: nnnninfeq2 7093 nqnq0pi 7379 genpassg 7467 addnqpr 7502 mulnqpr 7518 distrprg 7529 1idpr 7533 ltexpri 7554 recexprlemex 7578 aptipr 7582 cauappcvgprlemladd 7599 ltntri 8026 add20 8372 inelr 8482 recgt0 8745 prodgt0 8747 squeeze0 8799 suprzclex 9289 eluzadd 9494 eluzsub 9495 xrletrid 9741 xrre 9756 xrre3 9758 xleadd1a 9809 elioc2 9872 elico2 9873 elicc2 9874 elfz1eq 9970 fztri3or 9974 fznatpl1 10011 nn0fz0 10054 fzctr 10068 fzo1fzo0n0 10118 fzoaddel 10127 exbtwnz 10186 flid 10219 flqaddz 10232 flqdiv 10256 modqid 10284 frec2uzf1od 10341 iseqf1olemqk 10429 bcval5 10676 abs2difabs 11050 fzomaxdiflem 11054 icodiamlt 11122 dfabsmax 11159 rexico 11163 mul0inf 11182 xrbdtri 11217 sumeq2 11300 sumsnf 11350 fsum00 11403 prodeq2 11498 prodsnf 11533 zsupcllemstep 11878 zssinfcl 11881 gcd0id 11912 gcdneg 11915 nn0seqcvgd 11973 lcmval 11995 lcmneg 12006 qredeq 12028 prmind2 12052 pw2dvdseu 12100 hashdvds 12153 pcpremul 12225 pcidlem 12254 pcgcd1 12259 fldivp1 12278 pcfaclem 12279 ennnfonelemex 12347 ennnfonelemnn0 12355 tgcl 12704 distop 12725 epttop 12730 neiss 12790 opnneissb 12795 ssnei2 12797 innei 12803 lmconst 12856 cnpnei 12859 cnptopco 12862 cnss1 12866 cnss2 12867 cncnpi 12868 cncnp 12870 cnconst2 12873 cnrest 12875 cnptopresti 12878 cnpdis 12882 lmtopcnp 12890 neitx 12908 tx1cn 12909 tx2cn 12910 txcnp 12911 txcnmpt 12913 txdis1cn 12918 psmetsym 12969 psmetres2 12973 isxmetd 12987 xmetsym 13008 xmetpsmet 13009 metrtri 13017 xblss2ps 13044 xblss2 13045 xblcntrps 13053 xblcntr 13054 bdxmet 13141 bdmet 13142 bdmopn 13144 xmetxp 13147 xmetxpbl 13148 rescncf 13208 cncfco 13218 mulcncflem 13230 mulcncf 13231 suplociccreex 13242 ivthinclemlopn 13254 ivthinclemuopn 13256 cnplimcim 13276 cnplimclemr 13278 limccnpcntop 13284 limccnp2cntop 13286 limccoap 13287 dvidlemap 13300 dvcn 13304 dvaddxxbr 13305 dvmulxxbr 13306 dvcoapbr 13311 dvcjbr 13312 dvrecap 13317 rpabscxpbnd 13499 lgsdirprm 13575 2sqlem8 13599 refeq 13907 apdifflemf 13925 |
Copyright terms: Public domain | W3C validator |