| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir2and | GIF version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpbir2and.1 | ⊢ (𝜑 → 𝜒) |
| mpbir2and.2 | ⊢ (𝜑 → 𝜃) |
| mpbir2and.3 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| mpbir2and | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir2and.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | mpbir2and.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
| 4 | mpbir2and.3 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 5 | 3, 4 | mpbird 167 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: nnnninfeq2 7195 nqnq0pi 7505 genpassg 7593 addnqpr 7628 mulnqpr 7644 distrprg 7655 1idpr 7659 ltexpri 7680 recexprlemex 7704 aptipr 7708 cauappcvgprlemladd 7725 ltntri 8154 add20 8501 inelr 8611 recgt0 8877 prodgt0 8879 squeeze0 8931 suprzclex 9424 eluzadd 9630 eluzsub 9631 xrletrid 9880 xrre 9895 xrre3 9897 xleadd1a 9948 elioc2 10011 elico2 10012 elicc2 10013 elfz1eq 10110 fztri3or 10114 fznatpl1 10151 nn0fz0 10194 fzctr 10208 fzo1fzo0n0 10259 fzoaddel 10268 zsupcllemstep 10319 zssinfcl 10322 exbtwnz 10340 flid 10374 flqaddz 10387 flqdiv 10413 modqid 10441 frec2uzf1od 10498 iseqf1olemqk 10599 bcval5 10855 abs2difabs 11273 fzomaxdiflem 11277 icodiamlt 11345 dfabsmax 11382 rexico 11386 mul0inf 11406 xrbdtri 11441 sumeq2 11524 sumsnf 11574 fsum00 11627 prodeq2 11722 prodsnf 11757 bitsfzolem 12118 bitsfzo 12119 gcd0id 12146 gcdneg 12149 nn0seqcvgd 12209 lcmval 12231 lcmneg 12242 qredeq 12264 prmind2 12288 pw2dvdseu 12336 hashdvds 12389 pcpremul 12462 pcidlem 12492 pcgcd1 12497 fldivp1 12517 pcfaclem 12518 4sqlem17 12576 ennnfonelemex 12631 ennnfonelemnn0 12639 mnd1 13087 grp1 13238 0subg 13329 nmznsg 13343 ghmpreima 13396 ghmeql 13397 ghmnsgpreima 13399 kerf1ghm 13404 ring1 13615 dvdsrmuld 13652 1unit 13663 unitmulcl 13669 unitgrp 13672 unitnegcl 13686 rhmdvdsr 13731 elrhmunit 13733 subrngintm 13768 subrguss 13792 subrgunit 13795 rhmeql 13806 rhmima 13807 lsslsp 13985 rnglidlrng 14054 fczpsrbag 14225 tgcl 14300 distop 14321 epttop 14326 neiss 14386 opnneissb 14391 ssnei2 14393 innei 14399 lmconst 14452 cnpnei 14455 cnptopco 14458 cnss1 14462 cnss2 14463 cncnpi 14464 cncnp 14466 cnconst2 14469 cnrest 14471 cnptopresti 14474 cnpdis 14478 lmtopcnp 14486 neitx 14504 tx1cn 14505 tx2cn 14506 txcnp 14507 txcnmpt 14509 txdis1cn 14514 psmetsym 14565 psmetres2 14569 isxmetd 14583 xmetsym 14604 xmetpsmet 14605 metrtri 14613 xblss2ps 14640 xblss2 14641 xblcntrps 14649 xblcntr 14650 bdxmet 14737 bdmet 14738 bdmopn 14740 xmetxp 14743 xmetxpbl 14744 rescncf 14817 cncfco 14827 mulcncflem 14843 mulcncf 14844 suplociccreex 14860 ivthinclemlopn 14872 ivthinclemuopn 14874 hovera 14883 hoverlt1 14885 cnplimcim 14903 cnplimclemr 14905 limccnpcntop 14911 limccnp2cntop 14913 limccoap 14914 dvidlemap 14927 dvidrelem 14928 dvidsslem 14929 dvcn 14936 dvaddxxbr 14937 dvmulxxbr 14938 dvcoapbr 14943 dvcjbr 14944 dvrecap 14949 rpabscxpbnd 15176 dvdsppwf1o 15225 lgsdirprm 15275 lgseisenlem1 15311 lgseisenlem2 15312 lgseisenlem3 15313 lgsquadlem1 15318 2sqlem8 15364 refeq 15672 apdifflemf 15690 ltlenmkv 15714 |
| Copyright terms: Public domain | W3C validator |