![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbir2and | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
mpbir2and.1 | ⊢ (𝜑 → 𝜒) |
mpbir2and.2 | ⊢ (𝜑 → 𝜃) |
mpbir2and.3 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
mpbir2and | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir2and.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | mpbir2and.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
4 | mpbir2and.3 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
5 | 3, 4 | mpbird 167 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: nnnninfeq2 7129 nqnq0pi 7439 genpassg 7527 addnqpr 7562 mulnqpr 7578 distrprg 7589 1idpr 7593 ltexpri 7614 recexprlemex 7638 aptipr 7642 cauappcvgprlemladd 7659 ltntri 8087 add20 8433 inelr 8543 recgt0 8809 prodgt0 8811 squeeze0 8863 suprzclex 9353 eluzadd 9558 eluzsub 9559 xrletrid 9807 xrre 9822 xrre3 9824 xleadd1a 9875 elioc2 9938 elico2 9939 elicc2 9940 elfz1eq 10037 fztri3or 10041 fznatpl1 10078 nn0fz0 10121 fzctr 10135 fzo1fzo0n0 10185 fzoaddel 10194 exbtwnz 10253 flid 10286 flqaddz 10299 flqdiv 10323 modqid 10351 frec2uzf1od 10408 iseqf1olemqk 10496 bcval5 10745 abs2difabs 11119 fzomaxdiflem 11123 icodiamlt 11191 dfabsmax 11228 rexico 11232 mul0inf 11251 xrbdtri 11286 sumeq2 11369 sumsnf 11419 fsum00 11472 prodeq2 11567 prodsnf 11602 zsupcllemstep 11948 zssinfcl 11951 gcd0id 11982 gcdneg 11985 nn0seqcvgd 12043 lcmval 12065 lcmneg 12076 qredeq 12098 prmind2 12122 pw2dvdseu 12170 hashdvds 12223 pcpremul 12295 pcidlem 12324 pcgcd1 12329 fldivp1 12348 pcfaclem 12349 ennnfonelemex 12417 ennnfonelemnn0 12425 mnd1 12852 grp1 12981 0subg 13064 nmznsg 13078 ring1 13241 dvdsrmuld 13270 1unit 13281 unitmulcl 13287 unitgrp 13290 unitnegcl 13304 subrguss 13362 subrgunit 13365 lsslsp 13520 tgcl 13649 distop 13670 epttop 13675 neiss 13735 opnneissb 13740 ssnei2 13742 innei 13748 lmconst 13801 cnpnei 13804 cnptopco 13807 cnss1 13811 cnss2 13812 cncnpi 13813 cncnp 13815 cnconst2 13818 cnrest 13820 cnptopresti 13823 cnpdis 13827 lmtopcnp 13835 neitx 13853 tx1cn 13854 tx2cn 13855 txcnp 13856 txcnmpt 13858 txdis1cn 13863 psmetsym 13914 psmetres2 13918 isxmetd 13932 xmetsym 13953 xmetpsmet 13954 metrtri 13962 xblss2ps 13989 xblss2 13990 xblcntrps 13998 xblcntr 13999 bdxmet 14086 bdmet 14087 bdmopn 14089 xmetxp 14092 xmetxpbl 14093 rescncf 14153 cncfco 14163 mulcncflem 14175 mulcncf 14176 suplociccreex 14187 ivthinclemlopn 14199 ivthinclemuopn 14201 cnplimcim 14221 cnplimclemr 14223 limccnpcntop 14229 limccnp2cntop 14231 limccoap 14232 dvidlemap 14245 dvcn 14249 dvaddxxbr 14250 dvmulxxbr 14251 dvcoapbr 14256 dvcjbr 14257 dvrecap 14262 rpabscxpbnd 14444 lgsdirprm 14520 lgseisenlem1 14535 lgseisenlem2 14536 2sqlem8 14555 refeq 14861 apdifflemf 14879 ltlenmkv 14903 |
Copyright terms: Public domain | W3C validator |