![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbir2and | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
mpbir2and.1 | ⊢ (𝜑 → 𝜒) |
mpbir2and.2 | ⊢ (𝜑 → 𝜃) |
mpbir2and.3 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
mpbir2and | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir2and.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | mpbir2and.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
4 | mpbir2and.3 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
5 | 3, 4 | mpbird 167 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: nnnninfeq2 7141 nqnq0pi 7451 genpassg 7539 addnqpr 7574 mulnqpr 7590 distrprg 7601 1idpr 7605 ltexpri 7626 recexprlemex 7650 aptipr 7654 cauappcvgprlemladd 7671 ltntri 8099 add20 8445 inelr 8555 recgt0 8821 prodgt0 8823 squeeze0 8875 suprzclex 9365 eluzadd 9570 eluzsub 9571 xrletrid 9819 xrre 9834 xrre3 9836 xleadd1a 9887 elioc2 9950 elico2 9951 elicc2 9952 elfz1eq 10049 fztri3or 10053 fznatpl1 10090 nn0fz0 10133 fzctr 10147 fzo1fzo0n0 10197 fzoaddel 10206 exbtwnz 10265 flid 10298 flqaddz 10311 flqdiv 10335 modqid 10363 frec2uzf1od 10420 iseqf1olemqk 10508 bcval5 10757 abs2difabs 11131 fzomaxdiflem 11135 icodiamlt 11203 dfabsmax 11240 rexico 11244 mul0inf 11263 xrbdtri 11298 sumeq2 11381 sumsnf 11431 fsum00 11484 prodeq2 11579 prodsnf 11614 zsupcllemstep 11960 zssinfcl 11963 gcd0id 11994 gcdneg 11997 nn0seqcvgd 12055 lcmval 12077 lcmneg 12088 qredeq 12110 prmind2 12134 pw2dvdseu 12182 hashdvds 12235 pcpremul 12307 pcidlem 12336 pcgcd1 12341 fldivp1 12360 pcfaclem 12361 ennnfonelemex 12429 ennnfonelemnn0 12437 mnd1 12869 grp1 13003 0subg 13091 nmznsg 13105 ring1 13309 dvdsrmuld 13344 1unit 13355 unitmulcl 13361 unitgrp 13364 unitnegcl 13378 subrngintm 13432 subrguss 13456 subrgunit 13459 lsslsp 13618 rnglidlrng 13687 tgcl 13860 distop 13881 epttop 13886 neiss 13946 opnneissb 13951 ssnei2 13953 innei 13959 lmconst 14012 cnpnei 14015 cnptopco 14018 cnss1 14022 cnss2 14023 cncnpi 14024 cncnp 14026 cnconst2 14029 cnrest 14031 cnptopresti 14034 cnpdis 14038 lmtopcnp 14046 neitx 14064 tx1cn 14065 tx2cn 14066 txcnp 14067 txcnmpt 14069 txdis1cn 14074 psmetsym 14125 psmetres2 14129 isxmetd 14143 xmetsym 14164 xmetpsmet 14165 metrtri 14173 xblss2ps 14200 xblss2 14201 xblcntrps 14209 xblcntr 14210 bdxmet 14297 bdmet 14298 bdmopn 14300 xmetxp 14303 xmetxpbl 14304 rescncf 14364 cncfco 14374 mulcncflem 14386 mulcncf 14387 suplociccreex 14398 ivthinclemlopn 14410 ivthinclemuopn 14412 cnplimcim 14432 cnplimclemr 14434 limccnpcntop 14440 limccnp2cntop 14442 limccoap 14443 dvidlemap 14456 dvcn 14460 dvaddxxbr 14461 dvmulxxbr 14462 dvcoapbr 14467 dvcjbr 14468 dvrecap 14473 rpabscxpbnd 14655 lgsdirprm 14731 lgseisenlem1 14746 lgseisenlem2 14747 2sqlem8 14766 refeq 15073 apdifflemf 15091 ltlenmkv 15115 |
Copyright terms: Public domain | W3C validator |