![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbir2and | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
mpbir2and.1 | ⊢ (𝜑 → 𝜒) |
mpbir2and.2 | ⊢ (𝜑 → 𝜃) |
mpbir2and.3 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
mpbir2and | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir2and.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | mpbir2and.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
4 | mpbir2and.3 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
5 | 3, 4 | mpbird 167 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: nnnninfeq2 7190 nqnq0pi 7500 genpassg 7588 addnqpr 7623 mulnqpr 7639 distrprg 7650 1idpr 7654 ltexpri 7675 recexprlemex 7699 aptipr 7703 cauappcvgprlemladd 7720 ltntri 8149 add20 8495 inelr 8605 recgt0 8871 prodgt0 8873 squeeze0 8925 suprzclex 9418 eluzadd 9624 eluzsub 9625 xrletrid 9874 xrre 9889 xrre3 9891 xleadd1a 9942 elioc2 10005 elico2 10006 elicc2 10007 elfz1eq 10104 fztri3or 10108 fznatpl1 10145 nn0fz0 10188 fzctr 10202 fzo1fzo0n0 10253 fzoaddel 10262 exbtwnz 10322 flid 10356 flqaddz 10369 flqdiv 10395 modqid 10423 frec2uzf1od 10480 iseqf1olemqk 10581 bcval5 10837 abs2difabs 11255 fzomaxdiflem 11259 icodiamlt 11327 dfabsmax 11364 rexico 11368 mul0inf 11387 xrbdtri 11422 sumeq2 11505 sumsnf 11555 fsum00 11608 prodeq2 11703 prodsnf 11738 zsupcllemstep 12085 zssinfcl 12088 gcd0id 12119 gcdneg 12122 nn0seqcvgd 12182 lcmval 12204 lcmneg 12215 qredeq 12237 prmind2 12261 pw2dvdseu 12309 hashdvds 12362 pcpremul 12434 pcidlem 12464 pcgcd1 12469 fldivp1 12489 pcfaclem 12490 4sqlem17 12548 ennnfonelemex 12574 ennnfonelemnn0 12582 mnd1 13030 grp1 13181 0subg 13272 nmznsg 13286 ghmpreima 13339 ghmeql 13340 ghmnsgpreima 13342 kerf1ghm 13347 ring1 13558 dvdsrmuld 13595 1unit 13606 unitmulcl 13612 unitgrp 13615 unitnegcl 13629 rhmdvdsr 13674 elrhmunit 13676 subrngintm 13711 subrguss 13735 subrgunit 13738 rhmeql 13749 rhmima 13750 lsslsp 13928 rnglidlrng 13997 fczpsrbag 14168 tgcl 14243 distop 14264 epttop 14269 neiss 14329 opnneissb 14334 ssnei2 14336 innei 14342 lmconst 14395 cnpnei 14398 cnptopco 14401 cnss1 14405 cnss2 14406 cncnpi 14407 cncnp 14409 cnconst2 14412 cnrest 14414 cnptopresti 14417 cnpdis 14421 lmtopcnp 14429 neitx 14447 tx1cn 14448 tx2cn 14449 txcnp 14450 txcnmpt 14452 txdis1cn 14457 psmetsym 14508 psmetres2 14512 isxmetd 14526 xmetsym 14547 xmetpsmet 14548 metrtri 14556 xblss2ps 14583 xblss2 14584 xblcntrps 14592 xblcntr 14593 bdxmet 14680 bdmet 14681 bdmopn 14683 xmetxp 14686 xmetxpbl 14687 rescncf 14760 cncfco 14770 mulcncflem 14786 mulcncf 14787 suplociccreex 14803 ivthinclemlopn 14815 ivthinclemuopn 14817 hovera 14826 hoverlt1 14828 cnplimcim 14846 cnplimclemr 14848 limccnpcntop 14854 limccnp2cntop 14856 limccoap 14857 dvidlemap 14870 dvidrelem 14871 dvidsslem 14872 dvcn 14879 dvaddxxbr 14880 dvmulxxbr 14881 dvcoapbr 14886 dvcjbr 14887 dvrecap 14892 rpabscxpbnd 15114 lgsdirprm 15191 lgseisenlem1 15227 lgseisenlem2 15228 lgseisenlem3 15229 lgsquadlem1 15234 2sqlem8 15280 refeq 15588 apdifflemf 15606 ltlenmkv 15630 |
Copyright terms: Public domain | W3C validator |