Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpbir2and | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
mpbir2and.1 | ⊢ (𝜑 → 𝜒) |
mpbir2and.2 | ⊢ (𝜑 → 𝜃) |
mpbir2and.3 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
mpbir2and | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir2and.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | mpbir2and.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
3 | 1, 2 | jca 304 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
4 | mpbir2and.3 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
5 | 3, 4 | mpbird 166 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: nnnninfeq2 7105 nqnq0pi 7400 genpassg 7488 addnqpr 7523 mulnqpr 7539 distrprg 7550 1idpr 7554 ltexpri 7575 recexprlemex 7599 aptipr 7603 cauappcvgprlemladd 7620 ltntri 8047 add20 8393 inelr 8503 recgt0 8766 prodgt0 8768 squeeze0 8820 suprzclex 9310 eluzadd 9515 eluzsub 9516 xrletrid 9762 xrre 9777 xrre3 9779 xleadd1a 9830 elioc2 9893 elico2 9894 elicc2 9895 elfz1eq 9991 fztri3or 9995 fznatpl1 10032 nn0fz0 10075 fzctr 10089 fzo1fzo0n0 10139 fzoaddel 10148 exbtwnz 10207 flid 10240 flqaddz 10253 flqdiv 10277 modqid 10305 frec2uzf1od 10362 iseqf1olemqk 10450 bcval5 10697 abs2difabs 11072 fzomaxdiflem 11076 icodiamlt 11144 dfabsmax 11181 rexico 11185 mul0inf 11204 xrbdtri 11239 sumeq2 11322 sumsnf 11372 fsum00 11425 prodeq2 11520 prodsnf 11555 zsupcllemstep 11900 zssinfcl 11903 gcd0id 11934 gcdneg 11937 nn0seqcvgd 11995 lcmval 12017 lcmneg 12028 qredeq 12050 prmind2 12074 pw2dvdseu 12122 hashdvds 12175 pcpremul 12247 pcidlem 12276 pcgcd1 12281 fldivp1 12300 pcfaclem 12301 ennnfonelemex 12369 ennnfonelemnn0 12377 mnd1 12679 tgcl 12858 distop 12879 epttop 12884 neiss 12944 opnneissb 12949 ssnei2 12951 innei 12957 lmconst 13010 cnpnei 13013 cnptopco 13016 cnss1 13020 cnss2 13021 cncnpi 13022 cncnp 13024 cnconst2 13027 cnrest 13029 cnptopresti 13032 cnpdis 13036 lmtopcnp 13044 neitx 13062 tx1cn 13063 tx2cn 13064 txcnp 13065 txcnmpt 13067 txdis1cn 13072 psmetsym 13123 psmetres2 13127 isxmetd 13141 xmetsym 13162 xmetpsmet 13163 metrtri 13171 xblss2ps 13198 xblss2 13199 xblcntrps 13207 xblcntr 13208 bdxmet 13295 bdmet 13296 bdmopn 13298 xmetxp 13301 xmetxpbl 13302 rescncf 13362 cncfco 13372 mulcncflem 13384 mulcncf 13385 suplociccreex 13396 ivthinclemlopn 13408 ivthinclemuopn 13410 cnplimcim 13430 cnplimclemr 13432 limccnpcntop 13438 limccnp2cntop 13440 limccoap 13441 dvidlemap 13454 dvcn 13458 dvaddxxbr 13459 dvmulxxbr 13460 dvcoapbr 13465 dvcjbr 13466 dvrecap 13471 rpabscxpbnd 13653 lgsdirprm 13729 2sqlem8 13753 refeq 14060 apdifflemf 14078 |
Copyright terms: Public domain | W3C validator |