![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbir2and | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
mpbir2and.1 | ⊢ (𝜑 → 𝜒) |
mpbir2and.2 | ⊢ (𝜑 → 𝜃) |
mpbir2and.3 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
mpbir2and | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir2and.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | mpbir2and.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
4 | mpbir2and.3 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
5 | 3, 4 | mpbird 167 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: nnnninfeq2 7147 nqnq0pi 7457 genpassg 7545 addnqpr 7580 mulnqpr 7596 distrprg 7607 1idpr 7611 ltexpri 7632 recexprlemex 7656 aptipr 7660 cauappcvgprlemladd 7677 ltntri 8105 add20 8451 inelr 8561 recgt0 8827 prodgt0 8829 squeeze0 8881 suprzclex 9371 eluzadd 9576 eluzsub 9577 xrletrid 9825 xrre 9840 xrre3 9842 xleadd1a 9893 elioc2 9956 elico2 9957 elicc2 9958 elfz1eq 10055 fztri3or 10059 fznatpl1 10096 nn0fz0 10139 fzctr 10153 fzo1fzo0n0 10203 fzoaddel 10212 exbtwnz 10271 flid 10304 flqaddz 10317 flqdiv 10341 modqid 10369 frec2uzf1od 10426 iseqf1olemqk 10514 bcval5 10763 abs2difabs 11137 fzomaxdiflem 11141 icodiamlt 11209 dfabsmax 11246 rexico 11250 mul0inf 11269 xrbdtri 11304 sumeq2 11387 sumsnf 11437 fsum00 11490 prodeq2 11585 prodsnf 11620 zsupcllemstep 11966 zssinfcl 11969 gcd0id 12000 gcdneg 12003 nn0seqcvgd 12061 lcmval 12083 lcmneg 12094 qredeq 12116 prmind2 12140 pw2dvdseu 12188 hashdvds 12241 pcpremul 12313 pcidlem 12342 pcgcd1 12347 fldivp1 12366 pcfaclem 12367 ennnfonelemex 12440 ennnfonelemnn0 12448 mnd1 12880 grp1 13023 0subg 13111 nmznsg 13125 ghmpreima 13173 ghmeql 13174 ghmnsgpreima 13176 kerf1ghm 13181 ring1 13379 dvdsrmuld 13414 1unit 13425 unitmulcl 13431 unitgrp 13434 unitnegcl 13448 rhmdvdsr 13493 elrhmunit 13495 subrngintm 13527 subrguss 13551 subrgunit 13554 lsslsp 13713 rnglidlrng 13782 tgcl 13968 distop 13989 epttop 13994 neiss 14054 opnneissb 14059 ssnei2 14061 innei 14067 lmconst 14120 cnpnei 14123 cnptopco 14126 cnss1 14130 cnss2 14131 cncnpi 14132 cncnp 14134 cnconst2 14137 cnrest 14139 cnptopresti 14142 cnpdis 14146 lmtopcnp 14154 neitx 14172 tx1cn 14173 tx2cn 14174 txcnp 14175 txcnmpt 14177 txdis1cn 14182 psmetsym 14233 psmetres2 14237 isxmetd 14251 xmetsym 14272 xmetpsmet 14273 metrtri 14281 xblss2ps 14308 xblss2 14309 xblcntrps 14317 xblcntr 14318 bdxmet 14405 bdmet 14406 bdmopn 14408 xmetxp 14411 xmetxpbl 14412 rescncf 14472 cncfco 14482 mulcncflem 14494 mulcncf 14495 suplociccreex 14506 ivthinclemlopn 14518 ivthinclemuopn 14520 cnplimcim 14540 cnplimclemr 14542 limccnpcntop 14548 limccnp2cntop 14550 limccoap 14551 dvidlemap 14564 dvcn 14568 dvaddxxbr 14569 dvmulxxbr 14570 dvcoapbr 14575 dvcjbr 14576 dvrecap 14581 rpabscxpbnd 14763 lgsdirprm 14839 lgseisenlem1 14854 lgseisenlem2 14855 2sqlem8 14874 refeq 15181 apdifflemf 15199 ltlenmkv 15223 |
Copyright terms: Public domain | W3C validator |