Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpbir2and | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
mpbir2and.1 | ⊢ (𝜑 → 𝜒) |
mpbir2and.2 | ⊢ (𝜑 → 𝜃) |
mpbir2and.3 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
mpbir2and | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir2and.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | mpbir2and.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
4 | mpbir2and.3 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
5 | 3, 4 | mpbird 167 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: nnnninfeq2 7117 nqnq0pi 7412 genpassg 7500 addnqpr 7535 mulnqpr 7551 distrprg 7562 1idpr 7566 ltexpri 7587 recexprlemex 7611 aptipr 7615 cauappcvgprlemladd 7632 ltntri 8059 add20 8405 inelr 8515 recgt0 8778 prodgt0 8780 squeeze0 8832 suprzclex 9322 eluzadd 9527 eluzsub 9528 xrletrid 9774 xrre 9789 xrre3 9791 xleadd1a 9842 elioc2 9905 elico2 9906 elicc2 9907 elfz1eq 10003 fztri3or 10007 fznatpl1 10044 nn0fz0 10087 fzctr 10101 fzo1fzo0n0 10151 fzoaddel 10160 exbtwnz 10219 flid 10252 flqaddz 10265 flqdiv 10289 modqid 10317 frec2uzf1od 10374 iseqf1olemqk 10462 bcval5 10709 abs2difabs 11083 fzomaxdiflem 11087 icodiamlt 11155 dfabsmax 11192 rexico 11196 mul0inf 11215 xrbdtri 11250 sumeq2 11333 sumsnf 11383 fsum00 11436 prodeq2 11531 prodsnf 11566 zsupcllemstep 11911 zssinfcl 11914 gcd0id 11945 gcdneg 11948 nn0seqcvgd 12006 lcmval 12028 lcmneg 12039 qredeq 12061 prmind2 12085 pw2dvdseu 12133 hashdvds 12186 pcpremul 12258 pcidlem 12287 pcgcd1 12292 fldivp1 12311 pcfaclem 12312 ennnfonelemex 12380 ennnfonelemnn0 12388 mnd1 12708 grp1 12835 ring1 13030 tgcl 13133 distop 13154 epttop 13159 neiss 13219 opnneissb 13224 ssnei2 13226 innei 13232 lmconst 13285 cnpnei 13288 cnptopco 13291 cnss1 13295 cnss2 13296 cncnpi 13297 cncnp 13299 cnconst2 13302 cnrest 13304 cnptopresti 13307 cnpdis 13311 lmtopcnp 13319 neitx 13337 tx1cn 13338 tx2cn 13339 txcnp 13340 txcnmpt 13342 txdis1cn 13347 psmetsym 13398 psmetres2 13402 isxmetd 13416 xmetsym 13437 xmetpsmet 13438 metrtri 13446 xblss2ps 13473 xblss2 13474 xblcntrps 13482 xblcntr 13483 bdxmet 13570 bdmet 13571 bdmopn 13573 xmetxp 13576 xmetxpbl 13577 rescncf 13637 cncfco 13647 mulcncflem 13659 mulcncf 13660 suplociccreex 13671 ivthinclemlopn 13683 ivthinclemuopn 13685 cnplimcim 13705 cnplimclemr 13707 limccnpcntop 13713 limccnp2cntop 13715 limccoap 13716 dvidlemap 13729 dvcn 13733 dvaddxxbr 13734 dvmulxxbr 13735 dvcoapbr 13740 dvcjbr 13741 dvrecap 13746 rpabscxpbnd 13928 lgsdirprm 14004 2sqlem8 14028 refeq 14335 apdifflemf 14353 |
Copyright terms: Public domain | W3C validator |