ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordir GIF version

Theorem ordir 812
Description: Distributive law for disjunction. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
ordir (((𝜑𝜓) ∨ 𝜒) ↔ ((𝜑𝜒) ∧ (𝜓𝜒)))

Proof of Theorem ordir
StepHypRef Expression
1 ordi 811 . 2 ((𝜒 ∨ (𝜑𝜓)) ↔ ((𝜒𝜑) ∧ (𝜒𝜓)))
2 orcom 723 . 2 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜒 ∨ (𝜑𝜓)))
3 orcom 723 . . 3 ((𝜑𝜒) ↔ (𝜒𝜑))
4 orcom 723 . . 3 ((𝜓𝜒) ↔ (𝜒𝜓))
53, 4anbi12i 457 . 2 (((𝜑𝜒) ∧ (𝜓𝜒)) ↔ ((𝜒𝜑) ∧ (𝜒𝜓)))
61, 2, 53bitr4i 211 1 (((𝜑𝜓) ∨ 𝜒) ↔ ((𝜑𝜒) ∧ (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wo 703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  orddi  815  pm5.62dc  940  dn1dc  955  suc11g  4541  bj-peano4  13990
  Copyright terms: Public domain W3C validator