ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplbi2 GIF version

Theorem simplbi2 383
Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.)
Hypothesis
Ref Expression
pm3.26bi2.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
simplbi2 (𝜓 → (𝜒𝜑))

Proof of Theorem simplbi2
StepHypRef Expression
1 pm3.26bi2.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21biimpri 132 . 2 ((𝜓𝜒) → 𝜑)
32ex 114 1 (𝜓 → (𝜒𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm5.62dc  935  pm5.63dc  936  simplbi2com  1432  reuss2  3401  elni2  7251  elpq  9582  elfz0ubfz0  10056  elfzmlbp  10063  fzo1fzo0n0  10114  elfzo0z  10115  fzofzim  10119  elfzodifsumelfzo  10132  p1modz1  11730  dfgcd2  11943  algcvga  11979  pcprendvds  12218
  Copyright terms: Public domain W3C validator