| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simplbi2 | GIF version | ||
| Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.) |
| Ref | Expression |
|---|---|
| pm3.26bi2.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| simplbi2 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.26bi2.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | biimpri 133 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜑) |
| 3 | 2 | ex 115 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.62dc 951 pm5.63dc 952 simplbi2com 1487 reuss2 3484 elni2 7509 elpq 9852 elfz0ubfz0 10329 elfzmlbp 10336 fzo1fzo0n0 10391 elfzo0z 10392 fzofzim 10396 elfzodifsumelfzo 10415 swrdswrd 11245 swrdccatin1 11265 p1modz1 12313 dfgcd2 12543 algcvga 12581 pcprendvds 12821 usgruspgrben 15992 trlf1 16106 |
| Copyright terms: Public domain | W3C validator |