Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simplbi2 | GIF version |
Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.) |
Ref | Expression |
---|---|
pm3.26bi2.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simplbi2 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.26bi2.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | biimpri 132 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜑) |
3 | 2 | ex 114 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.62dc 941 pm5.63dc 942 simplbi2com 1438 reuss2 3408 elni2 7280 elpq 9611 elfz0ubfz0 10085 elfzmlbp 10092 fzo1fzo0n0 10143 elfzo0z 10144 fzofzim 10148 elfzodifsumelfzo 10161 p1modz1 11760 dfgcd2 11973 algcvga 12009 pcprendvds 12248 |
Copyright terms: Public domain | W3C validator |