| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simplbi2 | GIF version | ||
| Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.) |
| Ref | Expression |
|---|---|
| pm3.26bi2.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| simplbi2 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.26bi2.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | biimpri 133 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜑) |
| 3 | 2 | ex 115 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.62dc 947 pm5.63dc 948 simplbi2com 1455 reuss2 3444 elni2 7400 elpq 9742 elfz0ubfz0 10219 elfzmlbp 10226 fzo1fzo0n0 10278 elfzo0z 10279 fzofzim 10283 elfzodifsumelfzo 10296 p1modz1 11978 dfgcd2 12208 algcvga 12246 pcprendvds 12486 |
| Copyright terms: Public domain | W3C validator |