![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simplbi2 | GIF version |
Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.) |
Ref | Expression |
---|---|
pm3.26bi2.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simplbi2 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.26bi2.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | biimpri 133 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜑) |
3 | 2 | ex 115 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm5.62dc 947 pm5.63dc 948 simplbi2com 1455 reuss2 3440 elni2 7376 elpq 9717 elfz0ubfz0 10194 elfzmlbp 10201 fzo1fzo0n0 10253 elfzo0z 10254 fzofzim 10258 elfzodifsumelfzo 10271 p1modz1 11940 dfgcd2 12154 algcvga 12192 pcprendvds 12431 |
Copyright terms: Public domain | W3C validator |