| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simplbi2 | GIF version | ||
| Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.) |
| Ref | Expression |
|---|---|
| pm3.26bi2.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| simplbi2 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.26bi2.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | biimpri 133 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜑) |
| 3 | 2 | ex 115 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.62dc 948 pm5.63dc 949 simplbi2com 1465 reuss2 3455 elni2 7440 elpq 9783 elfz0ubfz0 10260 elfzmlbp 10267 fzo1fzo0n0 10320 elfzo0z 10321 fzofzim 10325 elfzodifsumelfzo 10343 swrdswrd 11170 p1modz1 12155 dfgcd2 12385 algcvga 12423 pcprendvds 12663 |
| Copyright terms: Public domain | W3C validator |