ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplbi2 GIF version

Theorem simplbi2 383
Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.)
Hypothesis
Ref Expression
pm3.26bi2.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
simplbi2 (𝜓 → (𝜒𝜑))

Proof of Theorem simplbi2
StepHypRef Expression
1 pm3.26bi2.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21biimpri 132 . 2 ((𝜓𝜒) → 𝜑)
32ex 114 1 (𝜓 → (𝜒𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm5.62dc  930  pm5.63dc  931  simplbi2com  1421  reuss2  3361  elni2  7146  elpq  9467  elfz0ubfz0  9933  elfzmlbp  9940  fzo1fzo0n0  9991  elfzo0z  9992  fzofzim  9996  elfzodifsumelfzo  10009  dfgcd2  11738  algcvga  11768
  Copyright terms: Public domain W3C validator