ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplbi2 GIF version

Theorem simplbi2 385
Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.)
Hypothesis
Ref Expression
pm3.26bi2.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
simplbi2 (𝜓 → (𝜒𝜑))

Proof of Theorem simplbi2
StepHypRef Expression
1 pm3.26bi2.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21biimpri 133 . 2 ((𝜓𝜒) → 𝜑)
32ex 115 1 (𝜓 → (𝜒𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.62dc  948  pm5.63dc  949  simplbi2com  1465  reuss2  3455  elni2  7440  elpq  9783  elfz0ubfz0  10260  elfzmlbp  10267  fzo1fzo0n0  10320  elfzo0z  10321  fzofzim  10325  elfzodifsumelfzo  10343  swrdswrd  11170  p1modz1  12155  dfgcd2  12385  algcvga  12423  pcprendvds  12663
  Copyright terms: Public domain W3C validator