| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simplbi2 | GIF version | ||
| Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.) |
| Ref | Expression |
|---|---|
| pm3.26bi2.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| simplbi2 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.26bi2.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | biimpri 133 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜑) |
| 3 | 2 | ex 115 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.62dc 951 pm5.63dc 952 simplbi2com 1487 reuss2 3484 elni2 7489 elpq 9832 elfz0ubfz0 10309 elfzmlbp 10316 fzo1fzo0n0 10371 elfzo0z 10372 fzofzim 10376 elfzodifsumelfzo 10394 swrdswrd 11223 swrdccatin1 11243 p1modz1 12291 dfgcd2 12521 algcvga 12559 pcprendvds 12799 usgruspgrben 15969 |
| Copyright terms: Public domain | W3C validator |