ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplbi2 GIF version

Theorem simplbi2 385
Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.)
Hypothesis
Ref Expression
pm3.26bi2.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
simplbi2 (𝜓 → (𝜒𝜑))

Proof of Theorem simplbi2
StepHypRef Expression
1 pm3.26bi2.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21biimpri 133 . 2 ((𝜓𝜒) → 𝜑)
32ex 115 1 (𝜓 → (𝜒𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.62dc  947  pm5.63dc  948  simplbi2com  1455  reuss2  3440  elni2  7376  elpq  9717  elfz0ubfz0  10194  elfzmlbp  10201  fzo1fzo0n0  10253  elfzo0z  10254  fzofzim  10258  elfzodifsumelfzo  10271  p1modz1  11940  dfgcd2  12154  algcvga  12192  pcprendvds  12431
  Copyright terms: Public domain W3C validator