ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplbi2 GIF version

Theorem simplbi2 385
Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.)
Hypothesis
Ref Expression
pm3.26bi2.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
simplbi2 (𝜓 → (𝜒𝜑))

Proof of Theorem simplbi2
StepHypRef Expression
1 pm3.26bi2.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21biimpri 133 . 2 ((𝜓𝜒) → 𝜑)
32ex 115 1 (𝜓 → (𝜒𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.62dc  951  pm5.63dc  952  simplbi2com  1487  reuss2  3484  elni2  7489  elpq  9832  elfz0ubfz0  10309  elfzmlbp  10316  fzo1fzo0n0  10371  elfzo0z  10372  fzofzim  10376  elfzodifsumelfzo  10394  swrdswrd  11223  swrdccatin1  11243  p1modz1  12291  dfgcd2  12521  algcvga  12559  pcprendvds  12799  usgruspgrben  15969
  Copyright terms: Public domain W3C validator