ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplbi2 GIF version

Theorem simplbi2 383
Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.)
Hypothesis
Ref Expression
pm3.26bi2.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
simplbi2 (𝜓 → (𝜒𝜑))

Proof of Theorem simplbi2
StepHypRef Expression
1 pm3.26bi2.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21biimpri 132 . 2 ((𝜓𝜒) → 𝜑)
32ex 114 1 (𝜓 → (𝜒𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm5.62dc  941  pm5.63dc  942  simplbi2com  1438  reuss2  3408  elni2  7280  elpq  9611  elfz0ubfz0  10085  elfzmlbp  10092  fzo1fzo0n0  10143  elfzo0z  10144  fzofzim  10148  elfzodifsumelfzo  10161  p1modz1  11760  dfgcd2  11973  algcvga  12009  pcprendvds  12248
  Copyright terms: Public domain W3C validator