ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplbi2 GIF version

Theorem simplbi2 385
Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.)
Hypothesis
Ref Expression
pm3.26bi2.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
simplbi2 (𝜓 → (𝜒𝜑))

Proof of Theorem simplbi2
StepHypRef Expression
1 pm3.26bi2.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21biimpri 133 . 2 ((𝜓𝜒) → 𝜑)
32ex 115 1 (𝜓 → (𝜒𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.62dc  947  pm5.63dc  948  simplbi2com  1455  reuss2  3443  elni2  7381  elpq  9723  elfz0ubfz0  10200  elfzmlbp  10207  fzo1fzo0n0  10259  elfzo0z  10260  fzofzim  10264  elfzodifsumelfzo  10277  p1modz1  11959  dfgcd2  12181  algcvga  12219  pcprendvds  12459
  Copyright terms: Public domain W3C validator