Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.37 | GIF version |
Description: Restricted version of one direction of Theorem 19.37 of [Margaris] p. 90. In classical logic the converse would hold if 𝐴 has at least one element, but that is not sufficient in intuitionistic logic. (Contributed by FL, 13-May-2012.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
r19.37.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
r19.37 | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.37.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | ax-1 6 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | |
3 | 1, 2 | ralrimi 2537 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
4 | r19.35-1 2616 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | |
5 | 3, 4 | syl5 32 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1448 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2449 df-rex 2450 |
This theorem is referenced by: r19.37av 2619 |
Copyright terms: Public domain | W3C validator |