| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > r19.37 | GIF version | ||
| Description: Restricted version of one direction of Theorem 19.37 of [Margaris] p. 90. In classical logic the converse would hold if 𝐴 has at least one element, but that is not sufficient in intuitionistic logic. (Contributed by FL, 13-May-2012.) (Revised by Mario Carneiro, 11-Dec-2016.) | 
| Ref | Expression | 
|---|---|
| r19.37.1 | ⊢ Ⅎ𝑥𝜑 | 
| Ref | Expression | 
|---|---|
| r19.37 | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | r19.37.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ax-1 6 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | |
| 3 | 1, 2 | ralrimi 2568 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜑) | 
| 4 | r19.35-1 2647 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | |
| 5 | 3, 4 | syl5 32 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 Ⅎwnf 1474 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 | 
| This theorem is referenced by: r19.37av 2650 | 
| Copyright terms: Public domain | W3C validator |