| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralrimi | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 10-Oct-1999.) |
| Ref | Expression |
|---|---|
| ralrimi.1 | ⊢ Ⅎ𝑥𝜑 |
| ralrimi.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| Ref | Expression |
|---|---|
| ralrimi | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralrimi.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | |
| 3 | 1, 2 | alrimi 1536 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) |
| 4 | df-ral 2480 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
| 5 | 3, 4 | sylibr 134 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: ralrimiv 2569 reximdai 2595 r19.12 2603 rexlimd 2611 rexlimd2 2612 r19.29af2 2637 r19.37 2649 ralidm 3552 iineq2d 3937 mpteq2da 4123 onintonm 4554 mpteqb 5655 fmptdf 5722 eusvobj2 5911 tfri3 6434 mapxpen 6918 fodjuomnilemdc 7219 cc3 7353 zsupcllemstep 10338 fimaxre2 11411 fprodcllemf 11797 fprodap0f 11820 fprodle 11824 bezoutlemmain 12192 bezoutlemzz 12196 exmidunben 12670 mulcncf 14952 limccnp2lem 15020 |
| Copyright terms: Public domain | W3C validator |