ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimi GIF version

Theorem ralrimi 2579
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 10-Oct-1999.)
Hypotheses
Ref Expression
ralrimi.1 𝑥𝜑
ralrimi.2 (𝜑 → (𝑥𝐴𝜓))
Assertion
Ref Expression
ralrimi (𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralrimi
StepHypRef Expression
1 ralrimi.1 . . 3 𝑥𝜑
2 ralrimi.2 . . 3 (𝜑 → (𝑥𝐴𝜓))
31, 2alrimi 1546 . 2 (𝜑 → ∀𝑥(𝑥𝐴𝜓))
4 df-ral 2491 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
53, 4sylibr 134 1 (𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wnf 1484  wcel 2178  wral 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-4 1534
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-ral 2491
This theorem is referenced by:  ralrimiv  2580  reximdai  2606  r19.12  2614  rexlimd  2622  rexlimd2  2623  r19.29af2  2648  r19.37  2660  ralidm  3569  iineq2d  3961  mpteq2da  4149  onintonm  4583  mpteqb  5693  fmptdf  5760  eusvobj2  5953  tfri3  6476  mapxpen  6970  fodjuomnilemdc  7272  cc3  7415  zsupcllemstep  10409  fimaxre2  11653  fprodcllemf  12039  fprodap0f  12062  fprodle  12066  bezoutlemmain  12434  bezoutlemzz  12438  exmidunben  12912  mulcncf  15195  limccnp2lem  15263  lfgrnloopen  15839
  Copyright terms: Public domain W3C validator