ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimi GIF version

Theorem ralrimi 2456
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 10-Oct-1999.)
Hypotheses
Ref Expression
ralrimi.1 𝑥𝜑
ralrimi.2 (𝜑 → (𝑥𝐴𝜓))
Assertion
Ref Expression
ralrimi (𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralrimi
StepHypRef Expression
1 ralrimi.1 . . 3 𝑥𝜑
2 ralrimi.2 . . 3 (𝜑 → (𝑥𝐴𝜓))
31, 2alrimi 1467 . 2 (𝜑 → ∀𝑥(𝑥𝐴𝜓))
4 df-ral 2375 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
53, 4sylibr 133 1 (𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1294  wnf 1401  wcel 1445  wral 2370
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1388  ax-gen 1390  ax-4 1452
This theorem depends on definitions:  df-bi 116  df-nf 1402  df-ral 2375
This theorem is referenced by:  ralrimiv  2457  reximdai  2483  r19.12  2491  rexlimd  2499  rexlimd2  2500  r19.29af2  2522  r19.37  2533  ralidm  3402  iineq2d  3772  mpteq2da  3949  onintonm  4362  mpteqb  5429  fmptdf  5494  eusvobj2  5676  tfri3  6170  mapxpen  6644  fodjuomnilemdc  6887  fimaxre2  10789  zsupcllemstep  11383  bezoutlemmain  11429  bezoutlemzz  11433
  Copyright terms: Public domain W3C validator