Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralrimi | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 10-Oct-1999.) |
Ref | Expression |
---|---|
ralrimi.1 | ⊢ Ⅎ𝑥𝜑 |
ralrimi.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
Ref | Expression |
---|---|
ralrimi | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | ralrimi.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | |
3 | 1, 2 | alrimi 1510 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) |
4 | df-ral 2449 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
5 | 3, 4 | sylibr 133 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 Ⅎwnf 1448 ∈ wcel 2136 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2449 |
This theorem is referenced by: ralrimiv 2538 reximdai 2564 r19.12 2572 rexlimd 2580 rexlimd2 2581 r19.29af2 2606 r19.37 2618 ralidm 3509 iineq2d 3886 mpteq2da 4071 onintonm 4494 mpteqb 5576 fmptdf 5642 eusvobj2 5828 tfri3 6335 mapxpen 6814 fodjuomnilemdc 7108 cc3 7209 fimaxre2 11168 fprodcllemf 11554 fprodap0f 11577 fprodle 11581 zsupcllemstep 11878 bezoutlemmain 11931 bezoutlemzz 11935 exmidunben 12359 mulcncf 13231 limccnp2lem 13285 |
Copyright terms: Public domain | W3C validator |