![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralrimi | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 10-Oct-1999.) |
Ref | Expression |
---|---|
ralrimi.1 | ⊢ Ⅎ𝑥𝜑 |
ralrimi.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
Ref | Expression |
---|---|
ralrimi | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | ralrimi.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | |
3 | 1, 2 | alrimi 1467 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) |
4 | df-ral 2375 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
5 | 3, 4 | sylibr 133 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1294 Ⅎwnf 1401 ∈ wcel 1445 ∀wral 2370 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1388 ax-gen 1390 ax-4 1452 |
This theorem depends on definitions: df-bi 116 df-nf 1402 df-ral 2375 |
This theorem is referenced by: ralrimiv 2457 reximdai 2483 r19.12 2491 rexlimd 2499 rexlimd2 2500 r19.29af2 2522 r19.37 2533 ralidm 3402 iineq2d 3772 mpteq2da 3949 onintonm 4362 mpteqb 5429 fmptdf 5494 eusvobj2 5676 tfri3 6170 mapxpen 6644 fodjuomnilemdc 6887 fimaxre2 10789 zsupcllemstep 11383 bezoutlemmain 11429 bezoutlemzz 11433 |
Copyright terms: Public domain | W3C validator |