ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimi GIF version

Theorem ralrimi 2577
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 10-Oct-1999.)
Hypotheses
Ref Expression
ralrimi.1 𝑥𝜑
ralrimi.2 (𝜑 → (𝑥𝐴𝜓))
Assertion
Ref Expression
ralrimi (𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralrimi
StepHypRef Expression
1 ralrimi.1 . . 3 𝑥𝜑
2 ralrimi.2 . . 3 (𝜑 → (𝑥𝐴𝜓))
31, 2alrimi 1545 . 2 (𝜑 → ∀𝑥(𝑥𝐴𝜓))
4 df-ral 2489 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
53, 4sylibr 134 1 (𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wnf 1483  wcel 2176  wral 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-4 1533
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-ral 2489
This theorem is referenced by:  ralrimiv  2578  reximdai  2604  r19.12  2612  rexlimd  2620  rexlimd2  2621  r19.29af2  2646  r19.37  2658  ralidm  3561  iineq2d  3947  mpteq2da  4133  onintonm  4565  mpteqb  5670  fmptdf  5737  eusvobj2  5930  tfri3  6453  mapxpen  6945  fodjuomnilemdc  7246  cc3  7380  zsupcllemstep  10372  fimaxre2  11538  fprodcllemf  11924  fprodap0f  11947  fprodle  11951  bezoutlemmain  12319  bezoutlemzz  12323  exmidunben  12797  mulcncf  15080  limccnp2lem  15148
  Copyright terms: Public domain W3C validator