ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimi GIF version

Theorem ralrimi 2577
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 10-Oct-1999.)
Hypotheses
Ref Expression
ralrimi.1 𝑥𝜑
ralrimi.2 (𝜑 → (𝑥𝐴𝜓))
Assertion
Ref Expression
ralrimi (𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralrimi
StepHypRef Expression
1 ralrimi.1 . . 3 𝑥𝜑
2 ralrimi.2 . . 3 (𝜑 → (𝑥𝐴𝜓))
31, 2alrimi 1545 . 2 (𝜑 → ∀𝑥(𝑥𝐴𝜓))
4 df-ral 2489 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
53, 4sylibr 134 1 (𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wnf 1483  wcel 2176  wral 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-4 1533
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-ral 2489
This theorem is referenced by:  ralrimiv  2578  reximdai  2604  r19.12  2612  rexlimd  2620  rexlimd2  2621  r19.29af2  2646  r19.37  2658  ralidm  3561  iineq2d  3947  mpteq2da  4134  onintonm  4566  mpteqb  5672  fmptdf  5739  eusvobj2  5932  tfri3  6455  mapxpen  6947  fodjuomnilemdc  7248  cc3  7382  zsupcllemstep  10374  fimaxre2  11571  fprodcllemf  11957  fprodap0f  11980  fprodle  11984  bezoutlemmain  12352  bezoutlemzz  12356  exmidunben  12830  mulcncf  15113  limccnp2lem  15181
  Copyright terms: Public domain W3C validator