ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimi GIF version

Theorem ralrimi 2565
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 10-Oct-1999.)
Hypotheses
Ref Expression
ralrimi.1 𝑥𝜑
ralrimi.2 (𝜑 → (𝑥𝐴𝜓))
Assertion
Ref Expression
ralrimi (𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralrimi
StepHypRef Expression
1 ralrimi.1 . . 3 𝑥𝜑
2 ralrimi.2 . . 3 (𝜑 → (𝑥𝐴𝜓))
31, 2alrimi 1533 . 2 (𝜑 → ∀𝑥(𝑥𝐴𝜓))
4 df-ral 2477 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
53, 4sylibr 134 1 (𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362  wnf 1471  wcel 2164  wral 2472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-4 1521
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-ral 2477
This theorem is referenced by:  ralrimiv  2566  reximdai  2592  r19.12  2600  rexlimd  2608  rexlimd2  2609  r19.29af2  2634  r19.37  2646  ralidm  3547  iineq2d  3932  mpteq2da  4118  onintonm  4549  mpteqb  5648  fmptdf  5715  eusvobj2  5904  tfri3  6420  mapxpen  6904  fodjuomnilemdc  7203  cc3  7328  fimaxre2  11370  fprodcllemf  11756  fprodap0f  11779  fprodle  11783  zsupcllemstep  12082  bezoutlemmain  12135  bezoutlemzz  12139  exmidunben  12583  mulcncf  14762  limccnp2lem  14830
  Copyright terms: Public domain W3C validator