Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralrimi | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 10-Oct-1999.) |
Ref | Expression |
---|---|
ralrimi.1 | ⊢ Ⅎ𝑥𝜑 |
ralrimi.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
Ref | Expression |
---|---|
ralrimi | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | ralrimi.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | |
3 | 1, 2 | alrimi 1515 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) |
4 | df-ral 2453 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
5 | 3, 4 | sylibr 133 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 Ⅎwnf 1453 ∈ wcel 2141 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-ral 2453 |
This theorem is referenced by: ralrimiv 2542 reximdai 2568 r19.12 2576 rexlimd 2584 rexlimd2 2585 r19.29af2 2610 r19.37 2622 ralidm 3515 iineq2d 3893 mpteq2da 4078 onintonm 4501 mpteqb 5586 fmptdf 5653 eusvobj2 5839 tfri3 6346 mapxpen 6826 fodjuomnilemdc 7120 cc3 7230 fimaxre2 11190 fprodcllemf 11576 fprodap0f 11599 fprodle 11603 zsupcllemstep 11900 bezoutlemmain 11953 bezoutlemzz 11957 exmidunben 12381 mulcncf 13385 limccnp2lem 13439 |
Copyright terms: Public domain | W3C validator |