| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralrimi | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 10-Oct-1999.) |
| Ref | Expression |
|---|---|
| ralrimi.1 | ⊢ Ⅎ𝑥𝜑 |
| ralrimi.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| Ref | Expression |
|---|---|
| ralrimi | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralrimi.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | |
| 3 | 1, 2 | alrimi 1545 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) |
| 4 | df-ral 2489 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
| 5 | 3, 4 | sylibr 134 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 Ⅎwnf 1483 ∈ wcel 2176 ∀wral 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 |
| This theorem is referenced by: ralrimiv 2578 reximdai 2604 r19.12 2612 rexlimd 2620 rexlimd2 2621 r19.29af2 2646 r19.37 2658 ralidm 3561 iineq2d 3947 mpteq2da 4134 onintonm 4566 mpteqb 5672 fmptdf 5739 eusvobj2 5932 tfri3 6455 mapxpen 6947 fodjuomnilemdc 7248 cc3 7382 zsupcllemstep 10374 fimaxre2 11571 fprodcllemf 11957 fprodap0f 11980 fprodle 11984 bezoutlemmain 12352 bezoutlemzz 12356 exmidunben 12830 mulcncf 15113 limccnp2lem 15181 |
| Copyright terms: Public domain | W3C validator |