| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralrimi | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 10-Oct-1999.) |
| Ref | Expression |
|---|---|
| ralrimi.1 | ⊢ Ⅎ𝑥𝜑 |
| ralrimi.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| Ref | Expression |
|---|---|
| ralrimi | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralrimi.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | |
| 3 | 1, 2 | alrimi 1545 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) |
| 4 | df-ral 2489 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
| 5 | 3, 4 | sylibr 134 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 Ⅎwnf 1483 ∈ wcel 2176 ∀wral 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 |
| This theorem is referenced by: ralrimiv 2578 reximdai 2604 r19.12 2612 rexlimd 2620 rexlimd2 2621 r19.29af2 2646 r19.37 2658 ralidm 3561 iineq2d 3947 mpteq2da 4133 onintonm 4565 mpteqb 5670 fmptdf 5737 eusvobj2 5930 tfri3 6453 mapxpen 6945 fodjuomnilemdc 7246 cc3 7380 zsupcllemstep 10372 fimaxre2 11538 fprodcllemf 11924 fprodap0f 11947 fprodle 11951 bezoutlemmain 12319 bezoutlemzz 12323 exmidunben 12797 mulcncf 15080 limccnp2lem 15148 |
| Copyright terms: Public domain | W3C validator |