| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.36av | GIF version | ||
| Description: One direction of a restricted quantifier version of Theorem 19.36 of [Margaris] p. 90. In classical logic, the converse would hold if 𝐴 has at least one element, but in intuitionistic logic, that is not a sufficient condition. (Contributed by NM, 22-Oct-2003.) |
| Ref | Expression |
|---|---|
| r19.36av | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.35-1 2656 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | |
| 2 | idd 21 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝜓 → 𝜓)) | |
| 3 | 2 | rexlimiv 2617 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜓 → 𝜓) |
| 4 | 3 | imim2i 12 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| 5 | 1, 4 | syl 14 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 ∀wral 2484 ∃wrex 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 df-rex 2490 |
| This theorem is referenced by: iinss 3979 |
| Copyright terms: Public domain | W3C validator |