| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > r19.35-1 | GIF version | ||
| Description: Restricted quantifier version of 19.35-1 1638. (Contributed by Jim Kingdon, 4-Jun-2018.) | 
| Ref | Expression | 
|---|---|
| r19.35-1 | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | r19.29 2634 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 (𝜑 → 𝜓)) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ (𝜑 → 𝜓))) | |
| 2 | pm3.35 347 | . . . 4 ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) | |
| 3 | 2 | reximi 2594 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ (𝜑 → 𝜓)) → ∃𝑥 ∈ 𝐴 𝜓) | 
| 4 | 1, 3 | syl 14 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 (𝜑 → 𝜓)) → ∃𝑥 ∈ 𝐴 𝜓) | 
| 5 | 4 | expcom 116 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∀wral 2475 ∃wrex 2476 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-ral 2480 df-rex 2481 | 
| This theorem is referenced by: r19.36av 2648 r19.37 2649 iinexgm 4187 bndndx 9248 | 
| Copyright terms: Public domain | W3C validator |