ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.35-1 GIF version

Theorem r19.35-1 2607
Description: Restricted quantifier version of 19.35-1 1604. (Contributed by Jim Kingdon, 4-Jun-2018.)
Assertion
Ref Expression
r19.35-1 (∃𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))

Proof of Theorem r19.35-1
StepHypRef Expression
1 r19.29 2594 . . 3 ((∀𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 (𝜑𝜓)) → ∃𝑥𝐴 (𝜑 ∧ (𝜑𝜓)))
2 pm3.35 345 . . . 4 ((𝜑 ∧ (𝜑𝜓)) → 𝜓)
32reximi 2554 . . 3 (∃𝑥𝐴 (𝜑 ∧ (𝜑𝜓)) → ∃𝑥𝐴 𝜓)
41, 3syl 14 . 2 ((∀𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 (𝜑𝜓)) → ∃𝑥𝐴 𝜓)
54expcom 115 1 (∃𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wral 2435  wrex 2436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-ral 2440  df-rex 2441
This theorem is referenced by:  r19.36av  2608  r19.37  2609  iinexgm  4115  bndndx  9084
  Copyright terms: Public domain W3C validator