ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmobii GIF version

Theorem rmobii 2624
Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmobii.1 (𝜑𝜓)
Assertion
Ref Expression
rmobii (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐴 𝜓)

Proof of Theorem rmobii
StepHypRef Expression
1 rmobii.1 . . 3 (𝜑𝜓)
21a1i 9 . 2 (𝑥𝐴 → (𝜑𝜓))
32rmobiia 2623 1 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 1481  ∃*wrmo 2420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-4 1488  ax-17 1507  ax-ial 1515
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-eu 2003  df-mo 2004  df-rmo 2425
This theorem is referenced by:  infmoti  6922
  Copyright terms: Public domain W3C validator