![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rmobii | GIF version |
Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
rmobii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
rmobii | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmobii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
3 | 2 | rmobiia 2667 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∈ wcel 2148 ∃*wrmo 2458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-eu 2029 df-mo 2030 df-rmo 2463 |
This theorem is referenced by: infmoti 7029 |
Copyright terms: Public domain | W3C validator |