Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > raleqf | GIF version |
Description: Equality theorem for restricted universal quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) (Revised by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
raleq1f.1 | ⊢ Ⅎ𝑥𝐴 |
raleq1f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
raleqf | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1f.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | raleq1f.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfeq 2320 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
4 | eleq2 2234 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
5 | 4 | imbi1d 230 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐵 → 𝜑))) |
6 | 3, 5 | albid 1608 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
7 | df-ral 2453 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
8 | df-ral 2453 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
9 | 6, 7, 8 | 3bitr4g 222 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 = wceq 1348 ∈ wcel 2141 Ⅎwnfc 2299 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 |
This theorem is referenced by: raleq 2665 repizf2 4148 ellimc3apf 13423 |
Copyright terms: Public domain | W3C validator |