| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-eu | GIF version | ||
| Description: Define existential uniqueness, i.e., "there exists exactly one 𝑥 such that 𝜑". Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2080, eu2 2099, eu3 2101, and eu5 2102 (which in some cases we show with a hypothesis 𝜑 → ∀𝑦𝜑 in place of a distinct variable condition on 𝑦 and 𝜑). Double uniqueness is tricky: ∃!𝑥∃!𝑦𝜑 does not mean "exactly one 𝑥 and one 𝑦 " (see 2eu4 2148). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-eu | ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | 1, 2 | weu 2055 | . 2 wff ∃!𝑥𝜑 |
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 2, 4 | weq 1527 | . . . . 5 wff 𝑥 = 𝑦 |
| 6 | 1, 5 | wb 105 | . . . 4 wff (𝜑 ↔ 𝑥 = 𝑦) |
| 7 | 6, 2 | wal 1371 | . . 3 wff ∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
| 8 | 7, 4 | wex 1516 | . 2 wff ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
| 9 | 3, 8 | wb 105 | 1 wff (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| Colors of variables: wff set class |
| This definition is referenced by: euf 2060 eubidh 2061 eubid 2062 hbeu1 2065 nfeu1 2066 sb8eu 2068 nfeudv 2070 nfeuv 2073 sb8euh 2078 exists1 2151 cbvreuvw 2745 reu6 2963 euabsn2 3703 euotd 4303 iotauni 5249 iota1 5251 iotanul 5252 euiotaex 5253 iota4 5256 eliotaeu 5265 fv3 5606 eufnfv 5822 |
| Copyright terms: Public domain | W3C validator |