Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-eu | GIF version |
Description: Define existential uniqueness, i.e., "there exists exactly one 𝑥 such that 𝜑". Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2039, eu2 2058, eu3 2060, and eu5 2061 (which in some cases we show with a hypothesis 𝜑 → ∀𝑦𝜑 in place of a distinct variable condition on 𝑦 and 𝜑). Double uniqueness is tricky: ∃!𝑥∃!𝑦𝜑 does not mean "exactly one 𝑥 and one 𝑦 " (see 2eu4 2107). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
df-eu | ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | weu 2014 | . 2 wff ∃!𝑥𝜑 |
4 | vy | . . . . . 6 setvar 𝑦 | |
5 | 2, 4 | weq 1491 | . . . . 5 wff 𝑥 = 𝑦 |
6 | 1, 5 | wb 104 | . . . 4 wff (𝜑 ↔ 𝑥 = 𝑦) |
7 | 6, 2 | wal 1341 | . . 3 wff ∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
8 | 7, 4 | wex 1480 | . 2 wff ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
9 | 3, 8 | wb 104 | 1 wff (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
Colors of variables: wff set class |
This definition is referenced by: euf 2019 eubidh 2020 eubid 2021 hbeu1 2024 nfeu1 2025 sb8eu 2027 nfeudv 2029 nfeuv 2032 sb8euh 2037 exists1 2110 cbvreuvw 2698 reu6 2915 euabsn2 3645 euotd 4232 iotauni 5165 iota1 5167 iotanul 5168 euiotaex 5169 iota4 5171 fv3 5509 eufnfv 5715 |
Copyright terms: Public domain | W3C validator |