| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-eu | GIF version | ||
| Description: Define existential uniqueness, i.e., "there exists exactly one 𝑥 such that 𝜑". Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2082, eu2 2102, eu3 2104, and eu5 2105 (which in some cases we show with a hypothesis 𝜑 → ∀𝑦𝜑 in place of a distinct variable condition on 𝑦 and 𝜑). Double uniqueness is tricky: ∃!𝑥∃!𝑦𝜑 does not mean "exactly one 𝑥 and one 𝑦 " (see 2eu4 2151). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-eu | ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | 1, 2 | weu 2057 | . 2 wff ∃!𝑥𝜑 |
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 2, 4 | weq 1529 | . . . . 5 wff 𝑥 = 𝑦 |
| 6 | 1, 5 | wb 105 | . . . 4 wff (𝜑 ↔ 𝑥 = 𝑦) |
| 7 | 6, 2 | wal 1373 | . . 3 wff ∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
| 8 | 7, 4 | wex 1518 | . 2 wff ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
| 9 | 3, 8 | wb 105 | 1 wff (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| Colors of variables: wff set class |
| This definition is referenced by: euf 2062 eubidh 2063 eubid 2064 hbeu1 2067 nfeu1 2068 sb8eu 2070 nfeudv 2072 nfeuv 2075 sb8euh 2080 exists1 2154 cbvreuvw 2751 reu6 2972 euabsn2 3715 euotd 4320 iotauni 5267 iota1 5269 iotanul 5270 euiotaex 5271 iota4 5274 eliotaeu 5283 fv3 5626 eufnfv 5843 |
| Copyright terms: Public domain | W3C validator |