ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-eu GIF version

Definition df-eu 1978
Description: Define existential uniqueness, i.e. "there exists exactly one 𝑥 such that 𝜑." Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2000, eu2 2019, eu3 2021, and eu5 2022 (which in some cases we show with a hypothesis 𝜑 → ∀𝑦𝜑 in place of a distinct variable condition on 𝑦 and 𝜑). Double uniqueness is tricky: ∃!𝑥∃!𝑦𝜑 does not mean "exactly one 𝑥 and one 𝑦 " (see 2eu4 2068). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-eu (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Detailed syntax breakdown of Definition df-eu
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
31, 2weu 1975 . 2 wff ∃!𝑥𝜑
4 vy . . . . . 6 setvar 𝑦
52, 4weq 1462 . . . . 5 wff 𝑥 = 𝑦
61, 5wb 104 . . . 4 wff (𝜑𝑥 = 𝑦)
76, 2wal 1312 . . 3 wff 𝑥(𝜑𝑥 = 𝑦)
87, 4wex 1451 . 2 wff 𝑦𝑥(𝜑𝑥 = 𝑦)
93, 8wb 104 1 wff (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Colors of variables: wff set class
This definition is referenced by:  euf  1980  eubidh  1981  eubid  1982  hbeu1  1985  nfeu1  1986  sb8eu  1988  nfeudv  1990  nfeuv  1993  sb8euh  1998  exists1  2071  reu6  2842  euabsn2  3558  euotd  4136  iotauni  5058  iota1  5060  iotanul  5061  euiotaex  5062  iota4  5064  fv3  5398  eufnfv  5602
  Copyright terms: Public domain W3C validator