![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-eu | GIF version |
Description: Define existential uniqueness, i.e. "there exists exactly one 𝑥 such that 𝜑." Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2000, eu2 2019, eu3 2021, and eu5 2022 (which in some cases we show with a hypothesis 𝜑 → ∀𝑦𝜑 in place of a distinct variable condition on 𝑦 and 𝜑). Double uniqueness is tricky: ∃!𝑥∃!𝑦𝜑 does not mean "exactly one 𝑥 and one 𝑦 " (see 2eu4 2068). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
df-eu | ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | weu 1975 | . 2 wff ∃!𝑥𝜑 |
4 | vy | . . . . . 6 setvar 𝑦 | |
5 | 2, 4 | weq 1462 | . . . . 5 wff 𝑥 = 𝑦 |
6 | 1, 5 | wb 104 | . . . 4 wff (𝜑 ↔ 𝑥 = 𝑦) |
7 | 6, 2 | wal 1312 | . . 3 wff ∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
8 | 7, 4 | wex 1451 | . 2 wff ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
9 | 3, 8 | wb 104 | 1 wff (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
Colors of variables: wff set class |
This definition is referenced by: euf 1980 eubidh 1981 eubid 1982 hbeu1 1985 nfeu1 1986 sb8eu 1988 nfeudv 1990 nfeuv 1993 sb8euh 1998 exists1 2071 reu6 2842 euabsn2 3558 euotd 4136 iotauni 5058 iota1 5060 iotanul 5061 euiotaex 5062 iota4 5064 fv3 5398 eufnfv 5602 |
Copyright terms: Public domain | W3C validator |