| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-eu | GIF version | ||
| Description: Define existential uniqueness, i.e., "there exists exactly one 𝑥 such that 𝜑". Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2102, eu2 2122, eu3 2124, and eu5 2125 (which in some cases we show with a hypothesis 𝜑 → ∀𝑦𝜑 in place of a distinct variable condition on 𝑦 and 𝜑). Double uniqueness is tricky: ∃!𝑥∃!𝑦𝜑 does not mean "exactly one 𝑥 and one 𝑦 " (see 2eu4 2171). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-eu | ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | 1, 2 | weu 2077 | . 2 wff ∃!𝑥𝜑 |
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 2, 4 | weq 1549 | . . . . 5 wff 𝑥 = 𝑦 |
| 6 | 1, 5 | wb 105 | . . . 4 wff (𝜑 ↔ 𝑥 = 𝑦) |
| 7 | 6, 2 | wal 1393 | . . 3 wff ∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
| 8 | 7, 4 | wex 1538 | . 2 wff ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
| 9 | 3, 8 | wb 105 | 1 wff (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| Colors of variables: wff set class |
| This definition is referenced by: euf 2082 eubidh 2083 eubid 2084 hbeu1 2087 nfeu1 2088 sb8eu 2090 nfeudv 2092 nfeuv 2095 sb8euh 2100 exists1 2174 cbvreuvw 2771 reu6 2992 euabsn2 3735 euotd 4341 iotauni 5291 iota1 5293 iotanul 5294 euiotaex 5295 iota4 5298 eliotaeu 5307 fv3 5652 eufnfv 5874 |
| Copyright terms: Public domain | W3C validator |