![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-eu | GIF version |
Description: Define existential uniqueness, i.e., "there exists exactly one 𝑥 such that 𝜑". Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2067, eu2 2086, eu3 2088, and eu5 2089 (which in some cases we show with a hypothesis 𝜑 → ∀𝑦𝜑 in place of a distinct variable condition on 𝑦 and 𝜑). Double uniqueness is tricky: ∃!𝑥∃!𝑦𝜑 does not mean "exactly one 𝑥 and one 𝑦 " (see 2eu4 2135). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
df-eu | ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | weu 2042 | . 2 wff ∃!𝑥𝜑 |
4 | vy | . . . . . 6 setvar 𝑦 | |
5 | 2, 4 | weq 1514 | . . . . 5 wff 𝑥 = 𝑦 |
6 | 1, 5 | wb 105 | . . . 4 wff (𝜑 ↔ 𝑥 = 𝑦) |
7 | 6, 2 | wal 1362 | . . 3 wff ∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
8 | 7, 4 | wex 1503 | . 2 wff ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
9 | 3, 8 | wb 105 | 1 wff (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
Colors of variables: wff set class |
This definition is referenced by: euf 2047 eubidh 2048 eubid 2049 hbeu1 2052 nfeu1 2053 sb8eu 2055 nfeudv 2057 nfeuv 2060 sb8euh 2065 exists1 2138 cbvreuvw 2732 reu6 2949 euabsn2 3687 euotd 4283 iotauni 5227 iota1 5229 iotanul 5230 euiotaex 5231 iota4 5234 eliotaeu 5243 fv3 5577 eufnfv 5789 |
Copyright terms: Public domain | W3C validator |