| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-eu | GIF version | ||
| Description: Define existential uniqueness, i.e., "there exists exactly one 𝑥 such that 𝜑". Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2070, eu2 2089, eu3 2091, and eu5 2092 (which in some cases we show with a hypothesis 𝜑 → ∀𝑦𝜑 in place of a distinct variable condition on 𝑦 and 𝜑). Double uniqueness is tricky: ∃!𝑥∃!𝑦𝜑 does not mean "exactly one 𝑥 and one 𝑦 " (see 2eu4 2138). (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| df-eu | ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | 1, 2 | weu 2045 | . 2 wff ∃!𝑥𝜑 | 
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 2, 4 | weq 1517 | . . . . 5 wff 𝑥 = 𝑦 | 
| 6 | 1, 5 | wb 105 | . . . 4 wff (𝜑 ↔ 𝑥 = 𝑦) | 
| 7 | 6, 2 | wal 1362 | . . 3 wff ∀𝑥(𝜑 ↔ 𝑥 = 𝑦) | 
| 8 | 7, 4 | wex 1506 | . 2 wff ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) | 
| 9 | 3, 8 | wb 105 | 1 wff (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | 
| Colors of variables: wff set class | 
| This definition is referenced by: euf 2050 eubidh 2051 eubid 2052 hbeu1 2055 nfeu1 2056 sb8eu 2058 nfeudv 2060 nfeuv 2063 sb8euh 2068 exists1 2141 cbvreuvw 2735 reu6 2953 euabsn2 3691 euotd 4287 iotauni 5231 iota1 5233 iotanul 5234 euiotaex 5235 iota4 5238 eliotaeu 5247 fv3 5581 eufnfv 5793 | 
| Copyright terms: Public domain | W3C validator |