ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-eu GIF version

Definition df-eu 2060
Description: Define existential uniqueness, i.e., "there exists exactly one 𝑥 such that 𝜑". Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2082, eu2 2102, eu3 2104, and eu5 2105 (which in some cases we show with a hypothesis 𝜑 → ∀𝑦𝜑 in place of a distinct variable condition on 𝑦 and 𝜑). Double uniqueness is tricky: ∃!𝑥∃!𝑦𝜑 does not mean "exactly one 𝑥 and one 𝑦 " (see 2eu4 2151). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-eu (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Detailed syntax breakdown of Definition df-eu
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
31, 2weu 2057 . 2 wff ∃!𝑥𝜑
4 vy . . . . . 6 setvar 𝑦
52, 4weq 1529 . . . . 5 wff 𝑥 = 𝑦
61, 5wb 105 . . . 4 wff (𝜑𝑥 = 𝑦)
76, 2wal 1373 . . 3 wff 𝑥(𝜑𝑥 = 𝑦)
87, 4wex 1518 . 2 wff 𝑦𝑥(𝜑𝑥 = 𝑦)
93, 8wb 105 1 wff (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Colors of variables: wff set class
This definition is referenced by:  euf  2062  eubidh  2063  eubid  2064  hbeu1  2067  nfeu1  2068  sb8eu  2070  nfeudv  2072  nfeuv  2075  sb8euh  2080  exists1  2154  cbvreuvw  2751  reu6  2972  euabsn2  3715  euotd  4320  iotauni  5267  iota1  5269  iotanul  5270  euiotaex  5271  iota4  5274  eliotaeu  5283  fv3  5626  eufnfv  5843
  Copyright terms: Public domain W3C validator