ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-eu GIF version

Definition df-eu 2058
Description: Define existential uniqueness, i.e., "there exists exactly one 𝑥 such that 𝜑". Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2080, eu2 2099, eu3 2101, and eu5 2102 (which in some cases we show with a hypothesis 𝜑 → ∀𝑦𝜑 in place of a distinct variable condition on 𝑦 and 𝜑). Double uniqueness is tricky: ∃!𝑥∃!𝑦𝜑 does not mean "exactly one 𝑥 and one 𝑦 " (see 2eu4 2148). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-eu (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Detailed syntax breakdown of Definition df-eu
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
31, 2weu 2055 . 2 wff ∃!𝑥𝜑
4 vy . . . . . 6 setvar 𝑦
52, 4weq 1527 . . . . 5 wff 𝑥 = 𝑦
61, 5wb 105 . . . 4 wff (𝜑𝑥 = 𝑦)
76, 2wal 1371 . . 3 wff 𝑥(𝜑𝑥 = 𝑦)
87, 4wex 1516 . 2 wff 𝑦𝑥(𝜑𝑥 = 𝑦)
93, 8wb 105 1 wff (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Colors of variables: wff set class
This definition is referenced by:  euf  2060  eubidh  2061  eubid  2062  hbeu1  2065  nfeu1  2066  sb8eu  2068  nfeudv  2070  nfeuv  2073  sb8euh  2078  exists1  2151  cbvreuvw  2745  reu6  2963  euabsn2  3703  euotd  4303  iotauni  5249  iota1  5251  iotanul  5252  euiotaex  5253  iota4  5256  eliotaeu  5265  fv3  5606  eufnfv  5822
  Copyright terms: Public domain W3C validator