ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infmoti GIF version

Theorem infmoti 7087
Description: Any class 𝐵 has at most one infimum in 𝐴 (where 𝑅 is interpreted as 'less than'). (Contributed by Jim Kingdon, 18-Dec-2021.)
Hypothesis
Ref Expression
infmoti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
Assertion
Ref Expression
infmoti (𝜑 → ∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Distinct variable groups:   𝑣,𝑢,𝑥,𝑦,𝑧,𝐴   𝑢,𝑅,𝑣,𝑥,𝑦,𝑧   𝑢,𝐵,𝑣,𝑥,𝑦,𝑧   𝜑,𝑢,𝑣,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)

Proof of Theorem infmoti
StepHypRef Expression
1 infmoti.ti . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
21cnvti 7078 . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
32supmoti 7052 . 2 (𝜑 → ∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
4 vex 2763 . . . . . . 7 𝑥 ∈ V
5 vex 2763 . . . . . . 7 𝑦 ∈ V
64, 5brcnv 4845 . . . . . 6 (𝑥𝑅𝑦𝑦𝑅𝑥)
76notbii 669 . . . . 5 𝑥𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥)
87ralbii 2500 . . . 4 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
95, 4brcnv 4845 . . . . . 6 (𝑦𝑅𝑥𝑥𝑅𝑦)
10 vex 2763 . . . . . . . 8 𝑧 ∈ V
115, 10brcnv 4845 . . . . . . 7 (𝑦𝑅𝑧𝑧𝑅𝑦)
1211rexbii 2501 . . . . . 6 (∃𝑧𝐵 𝑦𝑅𝑧 ↔ ∃𝑧𝐵 𝑧𝑅𝑦)
139, 12imbi12i 239 . . . . 5 ((𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))
1413ralbii 2500 . . . 4 (∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))
158, 14anbi12i 460 . . 3 ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
1615rmobii 2685 . 2 (∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ ∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
173, 16sylib 122 1 (𝜑 → ∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2164  wral 2472  wrex 2473  ∃*wrmo 2475   class class class wbr 4029  ccnv 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rmo 2480  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-cnv 4667
This theorem is referenced by:  infeuti  7088
  Copyright terms: Public domain W3C validator