| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infmoti | GIF version | ||
| Description: Any class 𝐵 has at most one infimum in 𝐴 (where 𝑅 is interpreted as 'less than'). (Contributed by Jim Kingdon, 18-Dec-2021.) |
| Ref | Expression |
|---|---|
| infmoti.ti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
| Ref | Expression |
|---|---|
| infmoti | ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infmoti.ti | . . . 4 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) | |
| 2 | 1 | cnvti 7103 | . . 3 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢))) |
| 3 | 2 | supmoti 7077 | . 2 ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
| 4 | vex 2774 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 5 | vex 2774 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 6 | 4, 5 | brcnv 4859 | . . . . . 6 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
| 7 | 6 | notbii 669 | . . . . 5 ⊢ (¬ 𝑥◡𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥) |
| 8 | 7 | ralbii 2511 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
| 9 | 5, 4 | brcnv 4859 | . . . . . 6 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
| 10 | vex 2774 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
| 11 | 5, 10 | brcnv 4859 | . . . . . . 7 ⊢ (𝑦◡𝑅𝑧 ↔ 𝑧𝑅𝑦) |
| 12 | 11 | rexbii 2512 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) |
| 13 | 9, 12 | imbi12i 239 | . . . . 5 ⊢ ((𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧) ↔ (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) |
| 14 | 13 | ralbii 2511 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧) ↔ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) |
| 15 | 8, 14 | anbi12i 460 | . . 3 ⊢ ((∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)) ↔ (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
| 16 | 15 | rmobii 2696 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)) ↔ ∃*𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
| 17 | 3, 16 | sylib 122 | 1 ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2175 ∀wral 2483 ∃wrex 2484 ∃*wrmo 2486 class class class wbr 4043 ◡ccnv 4672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rmo 2491 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-cnv 4681 |
| This theorem is referenced by: infeuti 7113 |
| Copyright terms: Public domain | W3C validator |