ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infmoti GIF version

Theorem infmoti 7005
Description: Any class 𝐵 has at most one infimum in 𝐴 (where 𝑅 is interpreted as 'less than'). (Contributed by Jim Kingdon, 18-Dec-2021.)
Hypothesis
Ref Expression
infmoti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
Assertion
Ref Expression
infmoti (𝜑 → ∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Distinct variable groups:   𝑣,𝑢,𝑥,𝑦,𝑧,𝐴   𝑢,𝑅,𝑣,𝑥,𝑦,𝑧   𝑢,𝐵,𝑣,𝑥,𝑦,𝑧   𝜑,𝑢,𝑣,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)

Proof of Theorem infmoti
StepHypRef Expression
1 infmoti.ti . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
21cnvti 6996 . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
32supmoti 6970 . 2 (𝜑 → ∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
4 vex 2733 . . . . . . 7 𝑥 ∈ V
5 vex 2733 . . . . . . 7 𝑦 ∈ V
64, 5brcnv 4794 . . . . . 6 (𝑥𝑅𝑦𝑦𝑅𝑥)
76notbii 663 . . . . 5 𝑥𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥)
87ralbii 2476 . . . 4 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
95, 4brcnv 4794 . . . . . 6 (𝑦𝑅𝑥𝑥𝑅𝑦)
10 vex 2733 . . . . . . . 8 𝑧 ∈ V
115, 10brcnv 4794 . . . . . . 7 (𝑦𝑅𝑧𝑧𝑅𝑦)
1211rexbii 2477 . . . . . 6 (∃𝑧𝐵 𝑦𝑅𝑧 ↔ ∃𝑧𝐵 𝑧𝑅𝑦)
139, 12imbi12i 238 . . . . 5 ((𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))
1413ralbii 2476 . . . 4 (∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))
158, 14anbi12i 457 . . 3 ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
1615rmobii 2660 . 2 (∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ ∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
173, 16sylib 121 1 (𝜑 → ∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wcel 2141  wral 2448  wrex 2449  ∃*wrmo 2451   class class class wbr 3989  ccnv 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rmo 2456  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-cnv 4619
This theorem is referenced by:  infeuti  7006
  Copyright terms: Public domain W3C validator