ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbequ2 GIF version

Theorem sbequ2 1815
Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbequ2 (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑𝜑))

Proof of Theorem sbequ2
StepHypRef Expression
1 df-sb 1809 . 2 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
2 simpl 109 . . 3 (((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)) → (𝑥 = 𝑦𝜑))
32com12 30 . 2 (𝑥 = 𝑦 → (((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)) → 𝜑))
41, 3biimtrid 152 1 (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1538  [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-sb 1809
This theorem is referenced by:  stdpc7  1816  sbequ12  1817  sbequi  1885  mo23  2119  mopick  2156
  Copyright terms: Public domain W3C validator