Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbequ1 | GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbequ1 | ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.4 331 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 → 𝜑)) | |
2 | 19.8a 1578 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
3 | df-sb 1751 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
4 | 1, 2, 3 | sylanbrc 414 | . 2 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑) |
5 | 4 | ex 114 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1480 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 |
This theorem depends on definitions: df-bi 116 df-sb 1751 |
This theorem is referenced by: sbequ12 1759 sbequi 1827 sb6rf 1841 mo2n 2042 bj-bdfindes 13831 bj-findes 13863 |
Copyright terms: Public domain | W3C validator |