ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbequ1 GIF version

Theorem sbequ1 1761
Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbequ1 (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑))

Proof of Theorem sbequ1
StepHypRef Expression
1 pm3.4 331 . . 3 ((𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
2 19.8a 1583 . . 3 ((𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
3 df-sb 1756 . . 3 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
41, 2, 3sylanbrc 415 . 2 ((𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
54ex 114 1 (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1485  [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503
This theorem depends on definitions:  df-bi 116  df-sb 1756
This theorem is referenced by:  sbequ12  1764  sbequi  1832  sb6rf  1846  mo2n  2047  bj-bdfindes  13984  bj-findes  14016
  Copyright terms: Public domain W3C validator