| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbequ12 | GIF version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbequ12 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ1 1792 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
| 2 | sbequ2 1793 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
| 3 | 1, 2 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 |
| This theorem is referenced by: sbequ12r 1796 sbequ12a 1797 sbid 1798 ax16 1837 sb8h 1878 sb8eh 1879 sb8 1880 sb8e 1881 ax16ALT 1883 sbco 1997 sbcomxyyz 2001 sb9v 2007 sb6a 2017 mopick 2133 clelab 2332 sbab 2334 nfabdw 2368 cbvralf 2731 cbvrexf 2732 cbvralsv 2755 cbvrexsv 2756 cbvrab 2771 sbhypf 2824 mob2 2957 reu2 2965 reu6 2966 sbcralt 3079 sbcrext 3080 sbcralg 3081 sbcreug 3083 cbvreucsf 3162 cbvrabcsf 3163 cbvopab1 4125 cbvopab1s 4127 csbopabg 4130 cbvmptf 4146 cbvmpt 4147 opelopabsb 4314 frind 4407 tfis 4639 findes 4659 opeliunxp 4738 ralxpf 4832 rexxpf 4833 cbviota 5246 csbiotag 5273 cbvriota 5923 csbriotag 5925 abrexex2g 6218 opabex3d 6219 opabex3 6220 abrexex2 6222 dfoprab4f 6292 finexdc 7014 ssfirab 7048 uzind4s 9731 zsupcllemstep 10394 bezoutlemmain 12394 nnwosdc 12435 cbvrald 15863 bj-bdfindes 16023 bj-findes 16055 |
| Copyright terms: Public domain | W3C validator |