![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbequ12 | GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbequ12 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ1 1779 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
2 | sbequ2 1780 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
3 | 1, 2 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 [wsb 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 |
This theorem depends on definitions: df-bi 117 df-sb 1774 |
This theorem is referenced by: sbequ12r 1783 sbequ12a 1784 sbid 1785 ax16 1824 sb8h 1865 sb8eh 1866 sb8 1867 sb8e 1868 ax16ALT 1870 sbco 1984 sbcomxyyz 1988 sb9v 1994 sb6a 2004 mopick 2120 clelab 2319 sbab 2321 nfabdw 2355 cbvralf 2718 cbvrexf 2719 cbvralsv 2742 cbvrexsv 2743 cbvrab 2758 sbhypf 2810 mob2 2941 reu2 2949 reu6 2950 sbcralt 3063 sbcrext 3064 sbcralg 3065 sbcreug 3067 cbvreucsf 3146 cbvrabcsf 3147 cbvopab1 4103 cbvopab1s 4105 csbopabg 4108 cbvmptf 4124 cbvmpt 4125 opelopabsb 4291 frind 4384 tfis 4616 findes 4636 opeliunxp 4715 ralxpf 4809 rexxpf 4810 cbviota 5221 csbiotag 5248 cbvriota 5885 csbriotag 5887 abrexex2g 6174 opabex3d 6175 opabex3 6176 abrexex2 6178 dfoprab4f 6248 finexdc 6960 ssfirab 6992 uzind4s 9658 zsupcllemstep 12085 bezoutlemmain 12138 nnwosdc 12179 cbvrald 15350 bj-bdfindes 15511 bj-findes 15543 |
Copyright terms: Public domain | W3C validator |