Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbequ12 | GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbequ12 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ1 1761 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
2 | sbequ2 1762 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
3 | 1, 2 | impbid 128 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 |
This theorem depends on definitions: df-bi 116 df-sb 1756 |
This theorem is referenced by: sbequ12r 1765 sbequ12a 1766 sbid 1767 ax16 1806 sb8h 1847 sb8eh 1848 sb8 1849 sb8e 1850 ax16ALT 1852 sbco 1961 sbcomxyyz 1965 sb9v 1971 sb6a 1981 mopick 2097 clelab 2296 sbab 2298 nfabdw 2331 cbvralf 2689 cbvrexf 2690 cbvralsv 2712 cbvrexsv 2713 cbvrab 2728 sbhypf 2779 mob2 2910 reu2 2918 reu6 2919 sbcralt 3031 sbcrext 3032 sbcralg 3033 sbcreug 3035 cbvreucsf 3113 cbvrabcsf 3114 cbvopab1 4062 cbvopab1s 4064 csbopabg 4067 cbvmptf 4083 cbvmpt 4084 opelopabsb 4245 frind 4337 tfis 4567 findes 4587 opeliunxp 4666 ralxpf 4757 rexxpf 4758 cbviota 5165 csbiotag 5191 cbvriota 5819 csbriotag 5821 abrexex2g 6099 opabex3d 6100 opabex3 6101 abrexex2 6103 dfoprab4f 6172 finexdc 6880 ssfirab 6911 uzind4s 9549 zsupcllemstep 11900 bezoutlemmain 11953 nnwosdc 11994 cbvrald 13823 bj-bdfindes 13984 bj-findes 14016 |
Copyright terms: Public domain | W3C validator |