![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbequ12 | GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbequ12 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ1 1779 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
2 | sbequ2 1780 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
3 | 1, 2 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 [wsb 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 |
This theorem depends on definitions: df-bi 117 df-sb 1774 |
This theorem is referenced by: sbequ12r 1783 sbequ12a 1784 sbid 1785 ax16 1824 sb8h 1865 sb8eh 1866 sb8 1867 sb8e 1868 ax16ALT 1870 sbco 1984 sbcomxyyz 1988 sb9v 1994 sb6a 2004 mopick 2120 clelab 2319 sbab 2321 nfabdw 2355 cbvralf 2718 cbvrexf 2719 cbvralsv 2742 cbvrexsv 2743 cbvrab 2758 sbhypf 2809 mob2 2940 reu2 2948 reu6 2949 sbcralt 3062 sbcrext 3063 sbcralg 3064 sbcreug 3066 cbvreucsf 3145 cbvrabcsf 3146 cbvopab1 4102 cbvopab1s 4104 csbopabg 4107 cbvmptf 4123 cbvmpt 4124 opelopabsb 4290 frind 4383 tfis 4615 findes 4635 opeliunxp 4714 ralxpf 4808 rexxpf 4809 cbviota 5220 csbiotag 5247 cbvriota 5884 csbriotag 5886 abrexex2g 6172 opabex3d 6173 opabex3 6174 abrexex2 6176 dfoprab4f 6246 finexdc 6958 ssfirab 6990 uzind4s 9655 zsupcllemstep 12082 bezoutlemmain 12135 nnwosdc 12176 cbvrald 15280 bj-bdfindes 15441 bj-findes 15473 |
Copyright terms: Public domain | W3C validator |