Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbequ12 | GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbequ12 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ1 1756 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
2 | sbequ2 1757 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
3 | 1, 2 | impbid 128 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 |
This theorem depends on definitions: df-bi 116 df-sb 1751 |
This theorem is referenced by: sbequ12r 1760 sbequ12a 1761 sbid 1762 ax16 1801 sb8h 1842 sb8eh 1843 sb8 1844 sb8e 1845 ax16ALT 1847 sbco 1956 sbcomxyyz 1960 sb9v 1966 sb6a 1976 mopick 2092 clelab 2292 sbab 2294 nfabdw 2327 cbvralf 2685 cbvrexf 2686 cbvralsv 2708 cbvrexsv 2709 cbvrab 2724 sbhypf 2775 mob2 2906 reu2 2914 reu6 2915 sbcralt 3027 sbcrext 3028 sbcralg 3029 sbcreug 3031 cbvreucsf 3109 cbvrabcsf 3110 cbvopab1 4055 cbvopab1s 4057 csbopabg 4060 cbvmptf 4076 cbvmpt 4077 opelopabsb 4238 frind 4330 tfis 4560 findes 4580 opeliunxp 4659 ralxpf 4750 rexxpf 4751 cbviota 5158 csbiotag 5181 cbvriota 5808 csbriotag 5810 abrexex2g 6088 opabex3d 6089 opabex3 6090 abrexex2 6092 dfoprab4f 6161 finexdc 6868 ssfirab 6899 uzind4s 9528 zsupcllemstep 11878 bezoutlemmain 11931 nnwosdc 11972 cbvrald 13669 bj-bdfindes 13831 bj-findes 13863 |
Copyright terms: Public domain | W3C validator |