Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbequ12 | GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbequ12 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ1 1748 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
2 | sbequ2 1749 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
3 | 1, 2 | impbid 128 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 [wsb 1742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 |
This theorem depends on definitions: df-bi 116 df-sb 1743 |
This theorem is referenced by: sbequ12r 1752 sbequ12a 1753 sbid 1754 ax16 1793 sb8h 1834 sb8eh 1835 sb8 1836 sb8e 1837 ax16ALT 1839 sbco 1948 sbcomxyyz 1952 sb9v 1958 sb6a 1968 mopick 2084 clelab 2283 sbab 2285 nfabdw 2318 cbvralf 2674 cbvrexf 2675 cbvralsv 2694 cbvrexsv 2695 cbvrab 2710 sbhypf 2761 mob2 2892 reu2 2900 reu6 2901 sbcralt 3013 sbcrext 3014 sbcralg 3015 sbcreug 3017 cbvreucsf 3095 cbvrabcsf 3096 cbvopab1 4037 cbvopab1s 4039 csbopabg 4042 cbvmptf 4058 cbvmpt 4059 opelopabsb 4220 frind 4312 tfis 4541 findes 4561 opeliunxp 4640 ralxpf 4731 rexxpf 4732 cbviota 5139 csbiotag 5162 cbvriota 5787 csbriotag 5789 abrexex2g 6065 opabex3d 6066 opabex3 6067 abrexex2 6069 dfoprab4f 6138 finexdc 6844 ssfirab 6875 uzind4s 9495 zsupcllemstep 11824 bezoutlemmain 11873 cbvrald 13333 bj-bdfindes 13495 bj-findes 13527 |
Copyright terms: Public domain | W3C validator |