| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbequ12 | GIF version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbequ12 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ1 1814 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
| 2 | sbequ2 1815 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
| 3 | 1, 2 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 [wsb 1808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 |
| This theorem is referenced by: sbequ12r 1818 sbequ12a 1819 sbid 1820 ax16 1859 sb8h 1900 sb8eh 1901 sb8 1902 sb8e 1903 ax16ALT 1905 sbco 2019 sbcomxyyz 2023 sb9v 2029 sb6a 2039 mopick 2156 clelab 2355 sbab 2357 nfabdw 2391 cbvralf 2756 cbvrexf 2757 cbvralsv 2781 cbvrexsv 2782 cbvrab 2797 sbhypf 2850 mob2 2983 reu2 2991 reu6 2992 sbcralt 3105 sbcrext 3106 sbcralg 3107 sbcreug 3109 cbvreucsf 3189 cbvrabcsf 3190 cbvopab1 4156 cbvopab1s 4158 csbopabg 4161 cbvmptf 4177 cbvmpt 4178 opelopabsb 4347 frind 4442 tfis 4674 findes 4694 opeliunxp 4773 ralxpf 4867 rexxpf 4868 cbviota 5282 csbiotag 5310 cbvriota 5965 csbriotag 5967 abrexex2g 6263 opabex3d 6264 opabex3 6265 abrexex2 6267 dfoprab4f 6337 finexdc 7060 ssfirab 7094 uzind4s 9781 zsupcllemstep 10444 bezoutlemmain 12514 nnwosdc 12555 cbvrald 16110 bj-bdfindes 16270 bj-findes 16302 |
| Copyright terms: Public domain | W3C validator |