HomeHome Intuitionistic Logic Explorer
Theorem List (p. 18 of 142)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1701-1800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremequcoms 1701 An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦𝜑)       (𝑦 = 𝑥𝜑)
 
Theoremequtr 1702 A transitive law for equality. (Contributed by NM, 23-Aug-1993.)
(𝑥 = 𝑦 → (𝑦 = 𝑧𝑥 = 𝑧))
 
Theoremequtrr 1703 A transitive law for equality. Lemma L17 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 23-Aug-1993.)
(𝑥 = 𝑦 → (𝑧 = 𝑥𝑧 = 𝑦))
 
Theoremequtr2 1704 A transitive law for equality. (Contributed by NM, 12-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
((𝑥 = 𝑧𝑦 = 𝑧) → 𝑥 = 𝑦)
 
Theoremequequ1 1705 An equivalence law for equality. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
 
Theoremequequ2 1706 An equivalence law for equality. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝑧 = 𝑥𝑧 = 𝑦))
 
Theoremax11i 1707 Inference that has ax-11 1499 (without 𝑦) as its conclusion and does not require ax-10 1498, ax-11 1499, or ax12 1505 for its proof. The hypotheses may be eliminable without one or more of these axioms in special cases. Proof similar to Lemma 16 of [Tarski] p. 70. (Contributed by NM, 20-May-2008.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   (𝜓 → ∀𝑥𝜓)       (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
1.3.9  Axioms ax-10 and ax-11
 
Theoremax10o 1708 Show that ax-10o 1709 can be derived from ax-10 1498. An open problem is whether this theorem can be derived from ax-10 1498 and the others when ax-11 1499 is replaced with ax-11o 1816. See Theorem ax10 1710 for the rederivation of ax-10 1498 from ax10o 1708.

Normally, ax10o 1708 should be used rather than ax-10o 1709, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.)

(∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
 
Axiomax-10o 1709 Axiom ax-10o 1709 ("o" for "old") was the original version of ax-10 1498, before it was discovered (in May 2008) that the shorter ax-10 1498 could replace it. It appears as Axiom scheme C11' in [Megill] p. 448 (p. 16 of the preprint).

This axiom is redundant, as shown by Theorem ax10o 1708.

Normally, ax10o 1708 should be used rather than ax-10o 1709, except by theorems specifically studying the latter's properties. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)

(∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
 
Theoremax10 1710 Rederivation of ax-10 1498 from original version ax-10o 1709. See Theorem ax10o 1708 for the derivation of ax-10o 1709 from ax-10 1498.

This theorem should not be referenced in any proof. Instead, use ax-10 1498 above so that uses of ax-10 1498 can be more easily identified. (Contributed by NM, 16-May-2008.) (New usage is discouraged.)

(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
 
Theoremhbae 1711 All variables are effectively bound in an identical variable specifier. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
 
Theoremnfae 1712 All variables are effectively bound in an identical variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑧𝑥 𝑥 = 𝑦
 
Theoremhbaes 1713 Rule that applies hbae 1711 to antecedent. (Contributed by NM, 5-Aug-1993.)
(∀𝑧𝑥 𝑥 = 𝑦𝜑)       (∀𝑥 𝑥 = 𝑦𝜑)
 
Theoremhbnae 1714 All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 5-Aug-1993.)
(¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)
 
Theoremnfnae 1715 All variables are effectively bound in a distinct variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑧 ¬ ∀𝑥 𝑥 = 𝑦
 
Theoremhbnaes 1716 Rule that applies hbnae 1714 to antecedent. (Contributed by NM, 5-Aug-1993.)
(∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦𝜑)       (¬ ∀𝑥 𝑥 = 𝑦𝜑)
 
Theoremnaecoms 1717 A commutation rule for distinct variable specifiers. (Contributed by NM, 2-Jan-2002.)
(¬ ∀𝑥 𝑥 = 𝑦𝜑)       (¬ ∀𝑦 𝑦 = 𝑥𝜑)
 
Theoremequs4 1718 Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 20-May-2014.)
(∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
 
Theoremequsalh 1719 A useful equivalence related to substitution. New proofs should use equsal 1720 instead. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.)
(𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
Theoremequsal 1720 A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 5-Feb-2018.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
Theoremequsex 1721 A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.)
(𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
Theoremequsexd 1722 Deduction form of equsex 1721. (Contributed by Jim Kingdon, 29-Dec-2017.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜒 → ∀𝑥𝜒))    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∃𝑥(𝑥 = 𝑦𝜓) ↔ 𝜒))
 
Theoremdral1 1723 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 24-Nov-1994.)
(∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
 
Theoremdral2 1724 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
(∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓))
 
Theoremdrex2 1725 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
(∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 ↔ ∃𝑧𝜓))
 
Theoremdrnf1 1726 Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.)
(∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓))
 
Theoremdrnf2 1727 Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.)
(∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓))
 
Theoremspimth 1728 Closed theorem form of spim 1731. (Contributed by NM, 15-Jan-2008.) (New usage is discouraged.)
(∀𝑥((𝜓 → ∀𝑥𝜓) ∧ (𝑥 = 𝑦 → (𝜑𝜓))) → (∀𝑥𝜑𝜓))
 
Theoremspimt 1729 Closed theorem form of spim 1731. (Contributed by NM, 15-Jan-2008.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Feb-2018.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑𝜓))) → (∀𝑥𝜑𝜓))
 
Theoremspimh 1730 Specialization, using implicit substitition. Compare Lemma 14 of [Tarski] p. 70. The spim 1731 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 8-May-2008.) (New usage is discouraged.)
(𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑𝜓)
 
Theoremspim 1731 Specialization, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. The spim 1731 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑𝜓)
 
Theoremspimeh 1732 Existential introduction, using implicit substitition. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Revised by NM, 3-Feb-2015.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (𝜑 → ∃𝑥𝜓)
 
Theoremspimed 1733 Deduction version of spime 1734. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 19-Feb-2018.)
(𝜒 → Ⅎ𝑥𝜑)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (𝜒 → (𝜑 → ∃𝑥𝜓))
 
Theoremspime 1734 Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Mar-2018.)
𝑥𝜑    &   (𝑥 = 𝑦 → (𝜑𝜓))       (𝜑 → ∃𝑥𝜓)
 
Theoremcbv3 1735 Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because proofs are encouraged to use the weaker cbv3v 1737 if possible. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-May-2018.) (New usage is discouraged.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 → ∀𝑦𝜓)
 
Theoremcbv3h 1736 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-May-2018.)
(𝜑 → ∀𝑦𝜑)    &   (𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 → ∀𝑦𝜓)
 
Theoremcbv3v 1737* Rule used to change bound variables, using implicit substitution. Version of cbv3 1735 with a disjoint variable condition. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 31-May-2019.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 → ∀𝑦𝜓)
 
Theoremcbv1 1738 Rule used to change bound variables, using implicit substitution. Revised to format hypotheses to common style. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.)
𝑥𝜑    &   𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒))
 
Theoremcbv1h 1739 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 13-May-2018.)
(𝜑 → (𝜓 → ∀𝑦𝜓))    &   (𝜑 → (𝜒 → ∀𝑥𝜒))    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (∀𝑥𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒))
 
Theoremcbv1v 1740* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 16-Jun-2019.)
𝑥𝜑    &   𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒))
 
Theoremcbv2h 1741 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.)
(𝜑 → (𝜓 → ∀𝑦𝜓))    &   (𝜑 → (𝜒 → ∀𝑥𝜒))    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (∀𝑥𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theoremcbv2 1742 Rule used to change bound variables, using implicit substitution. Revised to align format of hypotheses to common style. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.)
𝑥𝜑    &   𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theoremcbv2w 1743* Rule used to change bound variables, using implicit substitution. Version of cbv2 1742 with a disjoint variable condition. (Contributed by NM, 5-Aug-1993.) (Revised by Gino Giotto, 10-Jan-2024.)
𝑥𝜑    &   𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theoremcbvalv1 1744* Rule used to change bound variables, using implicit substitution. Version of cbval 1747 with a disjoint variable condition. See cbvalvw 1912 for a version with two disjoint variable conditions, and cbvalv 1910 for another variant. (Contributed by NM, 13-May-1993.) (Revised by BJ, 31-May-2019.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 ↔ ∀𝑦𝜓)
 
Theoremcbvexv1 1745* Rule used to change bound variables, using implicit substitution. Version of cbvex 1749 with a disjoint variable condition. See cbvexvw 1913 for a version with two disjoint variable conditions, and cbvexv 1911 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝜑 ↔ ∃𝑦𝜓)
 
Theoremcbvalh 1746 Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑 → ∀𝑦𝜑)    &   (𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 ↔ ∀𝑦𝜓)
 
Theoremcbval 1747 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 ↔ ∀𝑦𝜓)
 
Theoremcbvexh 1748 Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Feb-2015.)
(𝜑 → ∀𝑦𝜑)    &   (𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝜑 ↔ ∃𝑦𝜓)
 
Theoremcbvex 1749 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝜑 ↔ ∃𝑦𝜓)
 
Theoremchvar 1750 Implicit substitution of 𝑦 for 𝑥 into a theorem. (Contributed by Raph Levien, 9-Jul-2003.) (Revised by Mario Carneiro, 3-Oct-2016.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))    &   𝜑       𝜓
 
Theoremequvini 1751 A variable introduction law for equality. Lemma 15 of [Monk2] p. 109, however we do not require 𝑧 to be distinct from 𝑥 and 𝑦 (making the proof longer). (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦))
 
Theoremequveli 1752 A variable elimination law for equality with no distinct variable requirements. (Compare equvini 1751.) (Contributed by NM, 1-Mar-2013.) (Revised by NM, 3-Feb-2015.)
(∀𝑧(𝑧 = 𝑥𝑧 = 𝑦) → 𝑥 = 𝑦)
 
Theoremnfald 1753 If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 6-Jan-2018.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥𝑦𝜓)
 
Theoremnfexd 1754 If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof rewritten by Jim Kingdon, 7-Feb-2018.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥𝑦𝜓)
 
1.3.10  Substitution (without distinct variables)
 
Syntaxwsb 1755 Extend wff definition to include proper substitution (read "the wff that results when 𝑦 is properly substituted for 𝑥 in wff 𝜑"). (Contributed by NM, 24-Jan-2006.)
wff [𝑦 / 𝑥]𝜑
 
Definitiondf-sb 1756 Define proper substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). For our notation, we use [𝑦 / 𝑥]𝜑 to mean "the wff that results when 𝑦 is properly substituted for 𝑥 in the wff 𝜑". We can also use [𝑦 / 𝑥]𝜑 in place of the "free for" side condition used in traditional predicate calculus; see, for example, stdpc4 1768.

Our notation was introduced in Haskell B. Curry's Foundations of Mathematical Logic (1977), p. 316 and is frequently used in textbooks of lambda calculus and combinatory logic. This notation improves the common but ambiguous notation, "𝜑(𝑦) is the wff that results when 𝑦 is properly substituted for 𝑥 in 𝜑(𝑥)". For example, if the original 𝜑(𝑥) is 𝑥 = 𝑦, then 𝜑(𝑦) is 𝑦 = 𝑦, from which we obtain that 𝜑(𝑥) is 𝑥 = 𝑥. So what exactly does 𝜑(𝑥) mean? Curry's notation solves this problem.

In most books, proper substitution has a somewhat complicated recursive definition with multiple cases based on the occurrences of free and bound variables in the wff. Instead, we use a single formula that is exactly equivalent and gives us a direct definition. We later prove that our definition has the properties we expect of proper substitution (see Theorems sbequ 1833, sbcom2 1980 and sbid2v 1989).

Note that our definition is valid even when 𝑥 and 𝑦 are replaced with the same variable, as sbid 1767 shows. We achieve this by having 𝑥 free in the first conjunct and bound in the second. We can also achieve this by using a dummy variable, as the alternate definition dfsb7 1984 shows (which some logicians may prefer because it doesn't mix free and bound variables). Another alternate definition which uses a dummy variable is dfsb7a 1987.

When 𝑥 and 𝑦 are distinct, we can express proper substitution with the simpler expressions of sb5 1880 and sb6 1879.

In classical logic, another possible definition is (𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑) but we do not have an intuitionistic proof that this is equivalent.

There are no restrictions on any of the variables, including what variables may occur in wff 𝜑. (Contributed by NM, 5-Aug-1993.)

([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
 
Theoremsbimi 1757 Infer substitution into antecedent and consequent of an implication. (Contributed by NM, 25-Jun-1998.)
(𝜑𝜓)       ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)
 
Theoremsbbii 1758 Infer substitution into both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.)
(𝜑𝜓)       ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)
 
Theoremsb1 1759 One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.)
([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb2 1760 One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.)
(∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
 
Theoremsbequ1 1761 An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑))
 
Theoremsbequ2 1762 An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑𝜑))
 
Theoremstdpc7 1763 One of the two equality axioms of standard predicate calculus, called substitutivity of equality. (The other one is stdpc6 1696.) Translated to traditional notation, it can be read: "𝑥 = 𝑦 → (𝜑(𝑥, 𝑥) → 𝜑(𝑥, 𝑦)), provided that 𝑦 is free for 𝑥 in 𝜑(𝑥, 𝑦)". Axiom 7 of [Mendelson] p. 95. (Contributed by NM, 15-Feb-2005.)
(𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))
 
Theoremsbequ12 1764 An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
 
Theoremsbequ12r 1765 An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
(𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))
 
Theoremsbequ12a 1766 An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑥 / 𝑦]𝜑))
 
Theoremsbid 1767 An identity theorem for substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). (Contributed by NM, 5-Aug-1993.)
([𝑥 / 𝑥]𝜑𝜑)
 
Theoremstdpc4 1768 The specialization axiom of standard predicate calculus. It states that if a statement 𝜑 holds for all 𝑥, then it also holds for the specific case of 𝑦 (properly) substituted for 𝑥. Translated to traditional notation, it can be read: "𝑥𝜑(𝑥) → 𝜑(𝑦), provided that 𝑦 is free for 𝑥 in 𝜑(𝑥)". Axiom 4 of [Mendelson] p. 69. (Contributed by NM, 5-Aug-1993.)
(∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
 
Theoremsbh 1769 Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 17-Oct-2004.)
(𝜑 → ∀𝑥𝜑)       ([𝑦 / 𝑥]𝜑𝜑)
 
Theoremsbf 1770 Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
𝑥𝜑       ([𝑦 / 𝑥]𝜑𝜑)
 
Theoremsbf2 1771 Substitution has no effect on a bound variable. (Contributed by NM, 1-Jul-2005.)
([𝑦 / 𝑥]∀𝑥𝜑 ↔ ∀𝑥𝜑)
 
Theoremsb6x 1772 Equivalence involving substitution for a variable not free. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
(𝜑 → ∀𝑥𝜑)       ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremnfs1f 1773 If 𝑥 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝜑       𝑥[𝑦 / 𝑥]𝜑
 
Theoremhbs1f 1774 If 𝑥 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑 → ∀𝑥𝜑)       ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 
Theoremsbequ5 1775 Substitution does not change an identical variable specifier. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 21-Dec-2004.)
([𝑤 / 𝑧]∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑦)
 
Theoremsbequ6 1776 Substitution does not change a distinctor. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 14-May-2005.)
([𝑤 / 𝑧] ¬ ∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
 
Theoremsbt 1777 A substitution into a theorem remains true. (See chvar 1750 and chvarv 1930 for versions using implicit substitition.) (Contributed by NM, 21-Jan-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝜑       [𝑦 / 𝑥]𝜑
 
Theoremequsb1 1778 Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.)
[𝑦 / 𝑥]𝑥 = 𝑦
 
Theoremequsb2 1779 Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.)
[𝑦 / 𝑥]𝑦 = 𝑥
 
Theoremsbiedh 1780 Conversion of implicit substitution to explicit substitution (deduction version of sbieh 1783). New proofs should use sbied 1781 instead. (Contributed by NM, 30-Jun-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜒 → ∀𝑥𝜒))    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
 
Theoremsbied 1781 Conversion of implicit substitution to explicit substitution (deduction version of sbie 1784). (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
 
Theoremsbiedv 1782* Conversion of implicit substitution to explicit substitution (deduction version of sbie 1784). (Contributed by NM, 7-Jan-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
 
Theoremsbieh 1783 Conversion of implicit substitution to explicit substitution. New proofs should use sbie 1784 instead. (Contributed by NM, 30-Jun-1994.) (New usage is discouraged.)
(𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝑦 / 𝑥]𝜑𝜓)
 
Theoremsbie 1784 Conversion of implicit substitution to explicit substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Revised by Wolf Lammen, 30-Apr-2018.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝑦 / 𝑥]𝜑𝜓)
 
Theoremsbiev 1785* Conversion of implicit substitution to explicit substitution. Version of sbie 1784 with a disjoint variable condition. (Contributed by Wolf Lammen, 18-Jan-2023.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝑦 / 𝑥]𝜑𝜓)
 
Theoremequsalv 1786* An equivalence related to implicit substitution. Version of equsal 1720 with a disjoint variable condition. (Contributed by NM, 2-Jun-1993.) (Revised by BJ, 31-May-2019.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
1.3.11  Theorems using axiom ax-11
 
Theoremequs5a 1787 A property related to substitution that unlike equs5 1822 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
(∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremequs5e 1788 A property related to substitution that unlike equs5 1822 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) (Revised by NM, 3-Feb-2015.)
(∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))
 
Theoremax11e 1789 Analogue to ax-11 1499 but for existential quantification. (Contributed by Mario Carneiro and Jim Kingdon, 31-Dec-2017.) (Proved by Mario Carneiro, 9-Feb-2018.)
(𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∃𝑦𝜑))
 
Theoremax10oe 1790 Quantifier Substitution for existential quantifiers. Analogue to ax10o 1708 but for rather than . (Contributed by Jim Kingdon, 21-Dec-2017.)
(∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜓 → ∃𝑦𝜓))
 
Theoremdrex1 1791 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) (Revised by NM, 3-Feb-2015.)
(∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 ↔ ∃𝑦𝜓))
 
Theoremdrsb1 1792 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 5-Aug-1993.)
(∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑))
 
Theoremexdistrfor 1793 Distribution of existential quantifiers, with a bound-variable hypothesis saying that 𝑦 is not free in 𝜑, but 𝑥 can be free in 𝜑 (and there is no distinct variable condition on 𝑥 and 𝑦). (Contributed by Jim Kingdon, 25-Feb-2018.)
(∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥𝑦𝜑)       (∃𝑥𝑦(𝜑𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
 
Theoremsb4a 1794 A version of sb4 1825 that doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremequs45f 1795 Two ways of expressing substitution when 𝑦 is not free in 𝜑. (Contributed by NM, 25-Apr-2008.)
(𝜑 → ∀𝑦𝜑)       (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb6f 1796 Equivalence for substitution when 𝑦 is not free in 𝜑. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 30-Apr-2008.)
(𝜑 → ∀𝑦𝜑)       ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb5f 1797 Equivalence for substitution when 𝑦 is not free in 𝜑. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 18-May-2008.)
(𝜑 → ∀𝑦𝜑)       ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb4e 1798 One direction of a simplified definition of substitution that unlike sb4 1825 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))
 
Theoremhbsb2a 1799 Special case of a bound-variable hypothesis builder for substitution. (Contributed by NM, 2-Feb-2007.)
([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 
Theoremhbsb2e 1800 Special case of a bound-variable hypothesis builder for substitution. (Contributed by NM, 2-Feb-2007.)
([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >