| Intuitionistic Logic Explorer Theorem List (p. 18 of 164) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | 19.37aiv 1701* | Inference from Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| ⊢ ∃𝑥(𝜑 → 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
| Theorem | 19.38 1702 | Theorem 19.38 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | ||
| Theorem | 19.23t 1703 | Closed form of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 7-Nov-2005.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
| ⊢ (Ⅎ𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) | ||
| Theorem | 19.23 1704 | Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
| ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) | ||
| Theorem | 19.32dc 1705 | Theorem 19.32 of [Margaris] p. 90, where 𝜑 is decidable. (Contributed by Jim Kingdon, 4-Jun-2018.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (DECID 𝜑 → (∀𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓))) | ||
| Theorem | 19.32r 1706 | One direction of Theorem 19.32 of [Margaris] p. 90. The converse holds if 𝜑 is decidable, as seen at 19.32dc 1705. (Contributed by Jim Kingdon, 28-Jul-2018.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ ((𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) | ||
| Theorem | 19.31r 1707 | One direction of Theorem 19.31 of [Margaris] p. 90. The converse holds in classical logic, but not intuitionistic logic. (Contributed by Jim Kingdon, 28-Jul-2018.) |
| ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ ((∀𝑥𝜑 ∨ 𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) | ||
| Theorem | 19.44 1708 | Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
| ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ 𝜓)) | ||
| Theorem | 19.45 1709 | Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓)) | ||
| Theorem | 19.34 1710 | Theorem 19.34 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| ⊢ ((∀𝑥𝜑 ∨ ∃𝑥𝜓) → ∃𝑥(𝜑 ∨ 𝜓)) | ||
| Theorem | 19.41h 1711 | Theorem 19.41 of [Margaris] p. 90. New proofs should use 19.41 1712 instead. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.) |
| ⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) | ||
| Theorem | 19.41 1712 | Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-Jan-2018.) |
| ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) | ||
| Theorem | 19.42h 1713 | Theorem 19.42 of [Margaris] p. 90. New proofs should use 19.42 1714 instead. (Contributed by NM, 18-Aug-1993.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) | ||
| Theorem | 19.42 1714 | Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) | ||
| Theorem | excom13 1715 | Swap 1st and 3rd existential quantifiers. (Contributed by NM, 9-Mar-1995.) |
| ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑧∃𝑦∃𝑥𝜑) | ||
| Theorem | exrot3 1716 | Rotate existential quantifiers. (Contributed by NM, 17-Mar-1995.) |
| ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑦∃𝑧∃𝑥𝜑) | ||
| Theorem | exrot4 1717 | Rotate existential quantifiers twice. (Contributed by NM, 9-Mar-1995.) |
| ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑧∃𝑤∃𝑥∃𝑦𝜑) | ||
| Theorem | nexr 1718 | Inference from 19.8a 1616. (Contributed by Jeff Hankins, 26-Jul-2009.) |
| ⊢ ¬ ∃𝑥𝜑 ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | exan 1719 | Place a conjunct in the scope of an existential quantifier. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| ⊢ (∃𝑥𝜑 ∧ 𝜓) ⇒ ⊢ ∃𝑥(𝜑 ∧ 𝜓) | ||
| Theorem | hbexd 1720 | Deduction form of bound-variable hypothesis builder hbex 1662. (Contributed by NM, 2-Jan-2002.) |
| ⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) ⇒ ⊢ (𝜑 → (∃𝑦𝜓 → ∀𝑥∃𝑦𝜓)) | ||
| Theorem | eeor 1721 | Rearrange existential quantifiers. (Contributed by NM, 8-Aug-1994.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓)) | ||
| Theorem | a9e 1722 | At least one individual exists. This is not a theorem of free logic, which is sound in empty domains. For such a logic, we would add this theorem as an axiom of set theory (Axiom 0 of [Kunen] p. 10). In the system consisting of ax-5 1473 through ax-14 2183 and ax-17 1552, all axioms other than ax-9 1557 are believed to be theorems of free logic, although the system without ax-9 1557 is probably not complete in free logic. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.) |
| ⊢ ∃𝑥 𝑥 = 𝑦 | ||
| Theorem | a9ev 1723* | At least one individual exists. Weaker version of a9e 1722. (Contributed by NM, 3-Aug-2017.) |
| ⊢ ∃𝑥 𝑥 = 𝑦 | ||
| Theorem | ax9o 1724 | An implication related to substitution. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.) |
| ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) | ||
| Theorem | spimfv 1725* | Specialization, using implicit substitution. Version of spim 1764 with a disjoint variable condition. See spimv 1837 for another variant. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 31-May-2019.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
| Theorem | chvarfv 1726* | Implicit substitution of 𝑦 for 𝑥 into a theorem. Version of chvar 1783 with a disjoint variable condition. (Contributed by Raph Levien, 9-Jul-2003.) (Revised by BJ, 31-May-2019.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
| Theorem | equid 1727 |
Identity law for equality (reflexivity). Lemma 6 of [Tarski] p. 68.
This is often an axiom of equality in textbook systems, but we don't
need it as an axiom since it can be proved from our other axioms.
This proof is similar to Tarski's and makes use of a dummy variable 𝑦. It also works in intuitionistic logic, unlike some other possible ways of proving this theorem. (Contributed by NM, 1-Apr-2005.) |
| ⊢ 𝑥 = 𝑥 | ||
| Theorem | nfequid 1728 | Bound-variable hypothesis builder for 𝑥 = 𝑥. This theorem tells us that any variable, including 𝑥, is effectively not free in 𝑥 = 𝑥, even though 𝑥 is technically free according to the traditional definition of free variable. (Contributed by NM, 13-Jan-2011.) (Revised by NM, 21-Aug-2017.) |
| ⊢ Ⅎ𝑦 𝑥 = 𝑥 | ||
| Theorem | stdpc6 1729 | One of the two equality axioms of standard predicate calculus, called reflexivity of equality. (The other one is stdpc7 1796.) Axiom 6 of [Mendelson] p. 95. Mendelson doesn't say why he prepended the redundant quantifier, but it was probably to be compatible with free logic (which is valid in the empty domain). (Contributed by NM, 16-Feb-2005.) |
| ⊢ ∀𝑥 𝑥 = 𝑥 | ||
| Theorem | equcomi 1730 | Commutative law for equality. Lemma 7 of [Tarski] p. 69. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | ||
| Theorem | ax6evr 1731* | A commuted form of a9ev 1723. The naming reflects how axioms were numbered in the Metamath Proof Explorer as of 2020 (a numbering which we eventually plan to adopt here too, but until this happens everywhere only some theorems will have it). (Contributed by BJ, 7-Dec-2020.) |
| ⊢ ∃𝑥 𝑦 = 𝑥 | ||
| Theorem | equcom 1732 | Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
| ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | ||
| Theorem | equcomd 1733 | Deduction form of equcom 1732, symmetry of equality. For the versions for classes, see eqcom 2211 and eqcomd 2215. (Contributed by BJ, 6-Oct-2019.) |
| ⊢ (𝜑 → 𝑥 = 𝑦) ⇒ ⊢ (𝜑 → 𝑦 = 𝑥) | ||
| Theorem | equcoms 1734 | An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (𝑦 = 𝑥 → 𝜑) | ||
| Theorem | equtr 1735 | A transitive law for equality. (Contributed by NM, 23-Aug-1993.) |
| ⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | ||
| Theorem | equtrr 1736 | A transitive law for equality. Lemma L17 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 23-Aug-1993.) |
| ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | ||
| Theorem | equtr2 1737 | A transitive law for equality. (Contributed by NM, 12-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑦) | ||
| Theorem | equequ1 1738 | An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) | ||
| Theorem | equequ2 1739 | An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) | ||
| Theorem | ax11i 1740 | Inference that has ax-11 1532 (without ∀𝑦) as its conclusion and does not require ax-10 1531, ax-11 1532, or ax12 1538 for its proof. The hypotheses may be eliminable without one or more of these axioms in special cases. Proof similar to Lemma 16 of [Tarski] p. 70. (Contributed by NM, 20-May-2008.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
| Theorem | ax10o 1741 |
Show that ax-10o 1742 can be derived from ax-10 1531. An open problem is
whether this theorem can be derived from ax-10 1531 and the others when
ax-11 1532 is replaced with ax-11o 1849. See Theorem ax10 1743
for the
rederivation of ax-10 1531 from ax10o 1741.
Normally, ax10o 1741 should be used rather than ax-10o 1742, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) | ||
| Axiom | ax-10o 1742 |
Axiom ax-10o 1742 ("o" for "old") was the
original version of ax-10 1531,
before it was discovered (in May 2008) that the shorter ax-10 1531 could
replace it. It appears as Axiom scheme C11' in [Megill] p. 448 (p. 16 of
the preprint).
This axiom is redundant, as shown by Theorem ax10o 1741. Normally, ax10o 1741 should be used rather than ax-10o 1742, except by theorems specifically studying the latter's properties. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) | ||
| Theorem | ax10 1743 |
Rederivation of ax-10 1531 from original version ax-10o 1742. See Theorem
ax10o 1741 for the derivation of ax-10o 1742 from ax-10 1531.
This theorem should not be referenced in any proof. Instead, use ax-10 1531 above so that uses of ax-10 1531 can be more easily identified. (Contributed by NM, 16-May-2008.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
| Theorem | hbae 1744 | All variables are effectively bound in an identical variable specifier. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | ||
| Theorem | nfae 1745 | All variables are effectively bound in an identical variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | ||
| Theorem | hbaes 1746 | Rule that applies hbae 1744 to antecedent. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (∀𝑧∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) | ||
| Theorem | hbnae 1747 | All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 5-Aug-1993.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦) | ||
| Theorem | nfnae 1748 | All variables are effectively bound in a distinct variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 | ||
| Theorem | hbnaes 1749 | Rule that applies hbnae 1747 to antecedent. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) | ||
| Theorem | naecoms 1750 | A commutation rule for distinct variable specifiers. (Contributed by NM, 2-Jan-2002.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → 𝜑) | ||
| Theorem | equs4 1751 | Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 20-May-2014.) |
| ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | ||
| Theorem | equsalh 1752 | A useful equivalence related to substitution. New proofs should use equsal 1753 instead. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.) |
| ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
| Theorem | equsal 1753 | A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 5-Feb-2018.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
| Theorem | equsex 1754 | A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.) |
| ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) | ||
| Theorem | equsexd 1755 | Deduction form of equsex 1754. (Contributed by Jim Kingdon, 29-Dec-2017.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) ↔ 𝜒)) | ||
| Theorem | dral1 1756 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 24-Nov-1994.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) | ||
| Theorem | dral2 1757 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓)) | ||
| Theorem | drex2 1758 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 ↔ ∃𝑧𝜓)) | ||
| Theorem | drnf1 1759 | Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓)) | ||
| Theorem | drnf2 1760 | Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓)) | ||
| Theorem | spimth 1761 | Closed theorem form of spim 1764. (Contributed by NM, 15-Jan-2008.) (New usage is discouraged.) |
| ⊢ (∀𝑥((𝜓 → ∀𝑥𝜓) ∧ (𝑥 = 𝑦 → (𝜑 → 𝜓))) → (∀𝑥𝜑 → 𝜓)) | ||
| Theorem | spimt 1762 | Closed theorem form of spim 1764. (Contributed by NM, 15-Jan-2008.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Feb-2018.) |
| ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) → (∀𝑥𝜑 → 𝜓)) | ||
| Theorem | spimh 1763 | Specialization, using implicit substitition. Compare Lemma 14 of [Tarski] p. 70. The spim 1764 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 8-May-2008.) (New usage is discouraged.) |
| ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
| Theorem | spim 1764 | Specialization, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. The spim 1764 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
| Theorem | spimeh 1765 | Existential introduction, using implicit substitition. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Revised by NM, 3-Feb-2015.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
| Theorem | spimed 1766 | Deduction version of spime 1767. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 19-Feb-2018.) |
| ⊢ (𝜒 → Ⅎ𝑥𝜑) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (𝜒 → (𝜑 → ∃𝑥𝜓)) | ||
| Theorem | spime 1767 | Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
| Theorem | cbv3 1768 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because proofs are encouraged to use the weaker cbv3v 1770 if possible. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-May-2018.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | ||
| Theorem | cbv3h 1769 | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-May-2018.) |
| ⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | ||
| Theorem | cbv3v 1770* | Rule used to change bound variables, using implicit substitution. Version of cbv3 1768 with a disjoint variable condition. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 31-May-2019.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | ||
| Theorem | cbv1 1771 | Rule used to change bound variables, using implicit substitution. Revised to format hypotheses to common style. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) | ||
| Theorem | cbv1h 1772 | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 13-May-2018.) |
| ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) ⇒ ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) | ||
| Theorem | cbv1v 1773* | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 16-Jun-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) | ||
| Theorem | cbv2h 1774 | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
| Theorem | cbv2 1775 | Rule used to change bound variables, using implicit substitution. Revised to align format of hypotheses to common style. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
| Theorem | cbv2w 1776* | Rule used to change bound variables, using implicit substitution. Version of cbv2 1775 with a disjoint variable condition. (Contributed by NM, 5-Aug-1993.) (Revised by GG, 10-Jan-2024.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
| Theorem | cbvalv1 1777* | Rule used to change bound variables, using implicit substitution. Version of cbval 1780 with a disjoint variable condition. See cbvalvw 1946 for a version with two disjoint variable conditions, and cbvalv 1944 for another variant. (Contributed by NM, 13-May-1993.) (Revised by BJ, 31-May-2019.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) | ||
| Theorem | cbvexv1 1778* | Rule used to change bound variables, using implicit substitution. Version of cbvex 1782 with a disjoint variable condition. See cbvexvw 1947 for a version with two disjoint variable conditions, and cbvexv 1945 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | ||
| Theorem | cbvalh 1779 | Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| ⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) | ||
| Theorem | cbval 1780 | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) | ||
| Theorem | cbvexh 1781 | Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Feb-2015.) |
| ⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | ||
| Theorem | cbvex 1782 | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | ||
| Theorem | chvar 1783 | Implicit substitution of 𝑦 for 𝑥 into a theorem. (Contributed by Raph Levien, 9-Jul-2003.) (Revised by Mario Carneiro, 3-Oct-2016.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
| Theorem | equvini 1784 | A variable introduction law for equality. Lemma 15 of [Monk2] p. 109, however we do not require 𝑧 to be distinct from 𝑥 and 𝑦 (making the proof longer). (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| ⊢ (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦)) | ||
| Theorem | equveli 1785 | A variable elimination law for equality with no distinct variable requirements. (Compare equvini 1784.) (Contributed by NM, 1-Mar-2013.) (Revised by NM, 3-Feb-2015.) |
| ⊢ (∀𝑧(𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → 𝑥 = 𝑦) | ||
| Theorem | nfald 1786 | If 𝑥 is not free in 𝜑, it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 6-Jan-2018.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) | ||
| Theorem | nfexd 1787 | If 𝑥 is not free in 𝜑, it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof rewritten by Jim Kingdon, 7-Feb-2018.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) | ||
| Syntax | wsb 1788 | Extend wff definition to include proper substitution (read "the wff that results when 𝑦 is properly substituted for 𝑥 in wff 𝜑"). (Contributed by NM, 24-Jan-2006.) |
| wff [𝑦 / 𝑥]𝜑 | ||
| Definition | df-sb 1789 |
Define proper substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the
preprint). For our notation, we use [𝑦 / 𝑥]𝜑 to mean "the wff
that results when 𝑦 is properly substituted for 𝑥 in the
wff
𝜑". We can also use [𝑦 / 𝑥]𝜑 in place of the "free for"
side condition used in traditional predicate calculus; see, for example,
stdpc4 1801.
Our notation was introduced in Haskell B. Curry's Foundations of Mathematical Logic (1977), p. 316 and is frequently used in textbooks of lambda calculus and combinatory logic. This notation improves the common but ambiguous notation, "𝜑(𝑦) is the wff that results when 𝑦 is properly substituted for 𝑥 in 𝜑(𝑥)". For example, if the original 𝜑(𝑥) is 𝑥 = 𝑦, then 𝜑(𝑦) is 𝑦 = 𝑦, from which we obtain that 𝜑(𝑥) is 𝑥 = 𝑥. So what exactly does 𝜑(𝑥) mean? Curry's notation solves this problem. In most books, proper substitution has a somewhat complicated recursive definition with multiple cases based on the occurrences of free and bound variables in the wff. Instead, we use a single formula that is exactly equivalent and gives us a direct definition. We later prove that our definition has the properties we expect of proper substitution (see Theorems sbequ 1866, sbcom2 2018 and sbid2v 2027). Note that our definition is valid even when 𝑥 and 𝑦 are replaced with the same variable, as sbid 1800 shows. We achieve this by having 𝑥 free in the first conjunct and bound in the second. We can also achieve this by using a dummy variable, as the alternate definition dfsb7 2022 shows (which some logicians may prefer because it doesn't mix free and bound variables). Another alternate definition which uses a dummy variable is dfsb7a 2025. When 𝑥 and 𝑦 are distinct, we can express proper substitution with the simpler expressions of sb5 1914 and sb6 1913. In classical logic, another possible definition is (𝑥 = 𝑦 ∧ 𝜑) ∨ ∀𝑥(𝑥 = 𝑦 → 𝜑) but we do not have an intuitionistic proof that this is equivalent. There are no restrictions on any of the variables, including what variables may occur in wff 𝜑. (Contributed by NM, 5-Aug-1993.) |
| ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | ||
| Theorem | sbimi 1790 | Infer substitution into antecedent and consequent of an implication. (Contributed by NM, 25-Jun-1998.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) | ||
| Theorem | sbbii 1791 | Infer substitution into both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) | ||
| Theorem | sb1 1792 | One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.) |
| ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | ||
| Theorem | sb2 1793 | One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) | ||
| Theorem | sbequ1 1794 | An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | ||
| Theorem | sbequ2 1795 | An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | ||
| Theorem | stdpc7 1796 | One of the two equality axioms of standard predicate calculus, called substitutivity of equality. (The other one is stdpc6 1729.) Translated to traditional notation, it can be read: "𝑥 = 𝑦 → (𝜑(𝑥, 𝑥) → 𝜑(𝑥, 𝑦)), provided that 𝑦 is free for 𝑥 in 𝜑(𝑥, 𝑦)". Axiom 7 of [Mendelson] p. 95. (Contributed by NM, 15-Feb-2005.) |
| ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 → 𝜑)) | ||
| Theorem | sbequ12 1797 | An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | ||
| Theorem | sbequ12r 1798 | An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) | ||
| Theorem | sbequ12a 1799 | An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑥 / 𝑦]𝜑)) | ||
| Theorem | sbid 1800 | An identity theorem for substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). (Contributed by NM, 5-Aug-1993.) |
| ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |