Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  stdpc7 GIF version

Theorem stdpc7 1743
 Description: One of the two equality axioms of standard predicate calculus, called substitutivity of equality. (The other one is stdpc6 1679.) Translated to traditional notation, it can be read: "𝑥 = 𝑦 → (𝜑(𝑥, 𝑥) → 𝜑(𝑥, 𝑦)), provided that 𝑦 is free for 𝑥 in 𝜑(𝑥, 𝑦)." Axiom 7 of [Mendelson] p. 95. (Contributed by NM, 15-Feb-2005.)
Assertion
Ref Expression
stdpc7 (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))

Proof of Theorem stdpc7
StepHypRef Expression
1 sbequ2 1742 . 2 (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑𝜑))
21equcoms 1684 1 (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))
 Colors of variables: wff set class Syntax hints:   → wi 4  [wsb 1735 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-gen 1425  ax-ie2 1470  ax-8 1482  ax-17 1506  ax-i9 1510 This theorem depends on definitions:  df-bi 116  df-sb 1736 This theorem is referenced by:  ax16  1785  sbequi  1811  sb5rf  1824
 Copyright terms: Public domain W3C validator