ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  stdpc7 GIF version

Theorem stdpc7 1758
Description: One of the two equality axioms of standard predicate calculus, called substitutivity of equality. (The other one is stdpc6 1691.) Translated to traditional notation, it can be read: "𝑥 = 𝑦 → (𝜑(𝑥, 𝑥) → 𝜑(𝑥, 𝑦)), provided that 𝑦 is free for 𝑥 in 𝜑(𝑥, 𝑦)". Axiom 7 of [Mendelson] p. 95. (Contributed by NM, 15-Feb-2005.)
Assertion
Ref Expression
stdpc7 (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))

Proof of Theorem stdpc7
StepHypRef Expression
1 sbequ2 1757 . 2 (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑𝜑))
21equcoms 1696 1 (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-gen 1437  ax-ie2 1482  ax-8 1492  ax-17 1514  ax-i9 1518
This theorem depends on definitions:  df-bi 116  df-sb 1751
This theorem is referenced by:  ax16  1801  sbequi  1827  sb5rf  1840
  Copyright terms: Public domain W3C validator