ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simprr2 GIF version

Theorem simprr2 1041
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simprr2 ((𝜏 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)

Proof of Theorem simprr2
StepHypRef Expression
1 simpr2 999 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜓)
21adantl 275 1 ((𝜏 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  icodiamlt  11144  summodc  11346  prodmodc  11541
  Copyright terms: Public domain W3C validator